Faculty of Chemistry, Nicolaus Copernicus University in Torun , 87-100 Torun, Poland.
ACS Nano. 2017 Nov 28;11(11):11409-11416. doi: 10.1021/acsnano.7b06031. Epub 2017 Oct 27.
We demonstrate a cost-effective synthesis route that provides Si-based anode materials with capacities between 2000 and 3000 mAh·g (400 and 600 mAh·g), Coulombic efficiencies above 99.5%, and almost 100% capacity retention over more than 100 cycles. The Si-based composite is prepared from highly porous silicon (obtained by reduction of silica) by encapsulation in an organic carbon and polymer-derived silicon oxycarbide (C/SiOC) matrix. Molecular dynamics simulations show that the highly porous silicon morphology delivers free volume for the accommodation of strain leading to no macroscopic changes during initial Li-Si alloying. In addition, a carbon layer provides an electrical contact, whereas the SiOC matrix significantly diminishes the interface between the electrolyte and the electrode material and thus suppresses the formation of a solid-electrolyte interphase on Si. Electrochemical tests of the micrometer-sized, glass-fiber-derived silicon demonstrate the up-scaling potential of the presented approach.
我们展示了一种具有成本效益的合成路线,该路线提供了容量在 2000 到 3000 mAh·g(400 到 600 mAh·g)之间、库仑效率高于 99.5%、超过 100 次循环后容量保持率接近 100%的硅基阳极材料。该硅基复合材料由高度多孔硅(通过二氧化硅还原获得)通过封装在有机碳和聚合物衍生的硅氧碳(C/SiOC)基质中制备而成。分子动力学模拟表明,高度多孔硅形态提供了用于容纳应变的自由体积,从而在初始 Li-Si 合金化过程中没有发生宏观变化。此外,碳层提供了电接触,而 SiOC 基质显著减小了电解质和电极材料之间的界面,从而抑制了在 Si 上形成固体电解质中间相。微米级、玻璃纤维衍生硅的电化学测试证明了所提出方法的放大潜力。