Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel; Hanse-Wissenschaftskolleg, Lehmkuhlenbusch 4, 27753 Delmenhorst, Germany.
Department of Neuroscience, University of Oldenburg, D-26111 Oldenburg, Germany.
Prog Retin Eye Res. 2018 Mar;63:69-91. doi: 10.1016/j.preteyeres.2017.10.003. Epub 2017 Oct 20.
The GUCY2D gene encodes for the photoreceptor guanylate cyclase GC-E that synthesizes the intracellular messenger of photoreceptor excitation cGMP and is regulated by intracellular Ca-sensor proteins named guanylate cyclase-activating proteins (GCAPs). Over 140 disease-causing mutations have been described so far in GUCY2D, 88% of which cause autosomal recessive Leber congenital amaurosis (LCA) while heterozygous missense mutations cause autosomal dominant cone-rod degeneration (adCRD). Mutations in GUCY2D are one of the major causes of all LCA cases and are the major cause of adCRD. A single amino acid, arginine at position 838, is likely to be the most sensitive one in GC-E as four single mutations and two complex mutations were reported to affect R838. The biochemical effect of 45 GC-E variants was studied showing a clear genotype-phenotype correlation: LCA-causing mutations either show reduced ability or complete inability to synthesize cGMP from GTP, while CRD-causing mutations are functional, but shift the Ca-sensitivity of the GC-E - GCAP complex. Eight animal models of retinal guanylate cyclase deficiency have been reported including knockout (KO) mouse and chicken models. These two models were used for gene augmentation therapy that yielded promising results. Here we integrate the available information on the genetics, biochemistry and phenotype that is related to GUCY2D mutations. These data clearly show that mutation type (missense versus null) and localization (dimerization domain versus other protein domains) are correlated with the pattern of inheritance, impact on enzymatic function and retinal phenotype. Such clear correlation is unique to GUCY2D while mutations in many other retinal disease genes show variable phenotypes and lack of available biochemical assays.
GUCY2D 基因编码光感受器鸟苷酸环化酶 GC-E,该酶合成光感受器兴奋的细胞内信使 cGMP,并受细胞内 Ca 传感器蛋白(称为鸟苷酸环化酶激活蛋白 (GCAP))调节。迄今为止,已经在 GUCY2D 中描述了超过 140 种致病突变,其中 88%导致常染色体隐性先天性黑蒙(LCA),而杂合错义突变导致常染色体显性锥-杆变性(adCRD)。GUCY2D 中的突变是所有 LCA 病例的主要原因之一,也是 adCRD 的主要原因。一个单一的氨基酸,位置 838 的精氨酸,可能是 GC-E 中最敏感的氨基酸,因为已经报道了四个单一突变和两个复杂突变会影响 R838。对 45 种 GC-E 变体的生化效应进行了研究,显示出明显的基因型-表型相关性:导致 LCA 的突变要么显示出从 GTP 合成 cGMP 的能力降低或完全丧失,而导致 CRD 的突变是功能性的,但会改变 GC-E-GCAP 复合物的 Ca 敏感性。已经报道了八种视网膜鸟苷酸环化酶缺乏症的动物模型,包括敲除(KO)小鼠和鸡模型。这两种模型都用于基因增强治疗,取得了有希望的结果。在这里,我们整合了与 GUCY2D 突变相关的遗传学、生物化学和表型的可用信息。这些数据清楚地表明,突变类型(错义与无效)和定位(二聚化结构域与其他蛋白结构域)与遗传模式、对酶功能的影响和视网膜表型相关。这种明确的相关性是 GUCY2D 所独有的,而许多其他视网膜疾病基因的突变表现出不同的表型,并且缺乏可用的生化检测。