Department of Mechanical Engineering, Clemson University, Clemson, SC.
Division of Pediatric Cardiology, Medical University of South Carolina, Charleston, SC.
J Thorac Cardiovasc Surg. 2018 Feb;155(2):712-721. doi: 10.1016/j.jtcvs.2017.09.046. Epub 2017 Sep 20.
Modeling of single-ventricle circulations has yielded important insights into their unique flow dynamics and physiology. Here we translated a state-of-the-art mathematical model into a patient-specific clinical decision support interactive Web-based simulation tool and show validation for all 3 stages of single-ventricular palliation.
Via the adoption a validated lumped parameter method, complete cardiovascular-pulmonary circulatory models of all 3 stages of single-ventricle physiology were created within a simulation tool. The closed-loop univentricular heart model includes scaling for growth and respiratory effects, and typical patient-specific parameters are entered through an intuitive user interface. The effects of medical or surgical interventions can be simulated and compared. To validate the simulator, patient parameters were collected from catheterization reports. Four simulator outputs were compared against catheterization findings: pulmonary to systemic flow ratio (Qp:Qs), systemic arterial saturation (SaO2), mean pulmonary arterial pressure (mPAp), and systemic-venous oxygen difference (SaO2-SvO2).
Data from 60 reports were used. Compared with the clinical values, the simulator results were not significantly different in mean Qp:Qs, SaO2, or mPAp (P > .09). There was a statistical but clinically insignificant difference in average SaO-SvO2 (average difference 1%, P < .01). Linear regression analyses revealed a good prediction for each variable (Qp:Qs, R = 0.79; SaO2, R = 0.64; mPAp, R = 0.69; SaO2-SvO2, R = 0.93).
This simulator responds quickly and predicts patient-specific hemodynamics with good clinical accuracy. By predicting postoperative and postintervention hemodynamics in all 3 stages of single-ventricle physiology, the simulator could assist in clinical decision-making, training, and consultation. Continuing model refinement and validation will further its application to the bedside.
单心室循环模型为其独特的流动动力学和生理学提供了重要的见解。在这里,我们将最先进的数学模型转化为特定于患者的临床决策支持交互式网络模拟工具,并展示了单心室修补术所有 3 个阶段的验证。
通过采用经过验证的集中参数方法,在模拟工具中创建了单心室生理学所有 3 个阶段的完整心血肺循环模型。单心室心脏模型包括生长和呼吸效应的比例缩放,并且典型的患者特定参数通过直观的用户界面输入。可以模拟和比较医疗或手术干预的效果。为了验证模拟器,从心导管报告中收集了患者参数。将四个模拟器输出与心导管检查结果进行比较:肺到全身血流量比(Qp:Qs)、全身动脉饱和度(SaO2)、平均肺动脉压(mPAp)和全身静脉氧差(SaO2-SvO2)。
使用了 60 份报告的数据。与临床值相比,模拟器结果在平均 Qp:Qs、SaO2 或 mPAp 方面没有显著差异(P>.09)。平均 SaO-SvO2 存在统计学但临床上无意义的差异(平均差异 1%,P<.01)。线性回归分析表明,每个变量都有很好的预测性(Qp:Qs,R=0.79;SaO2,R=0.64;mPAp,R=0.69;SaO2-SvO2,R=0.93)。
该模拟器响应迅速,可准确预测患者特定的血液动力学。通过预测单心室生理学所有 3 个阶段的术后和术后干预血液动力学,模拟器可以辅助临床决策、培训和咨询。继续进行模型改进和验证将进一步将其应用于床边。