Suppr超能文献

通过改变氨基酸代谢来抑制一个温度敏感型细胞分裂突变体

Suppression of a Thermosensitive Cell Division Mutant by Altering Amino Acid Metabolism.

作者信息

Vega Daniel E, Margolin William

机构信息

Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.

Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA

出版信息

J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00535-17. Print 2018 Jan 15.

Abstract

ZipA is essential for cell division in , acting early in the process to anchor polymers of FtsZ to the cytoplasmic membrane. Along with FtsA, FtsZ and ZipA form a proto-ring at midcell that recruits additional proteins to eventually build the division septum. Cells carrying the thermosensitive allele divide fairly normally at 30°C in rich medium but cease dividing at temperatures above 34°C, forming long filaments. In a search for suppressors of the allele, we found that deletions of specific genes involved in amino acid biosynthesis could partially rescue cell growth and division at 34°C or 37°C but not at 42°C. Notably, although a diverse group of amino acid biosynthesis gene deletions could partially rescue the growth of cells at 34°C, only deletions of genes related to the biosynthesis of threonine, glycine, serine, and methionine could rescue growth at 37°C. Adding exogenous pyridoxal 5-phosphate (PLP), a cofactor for many of the enzymes affected by this study, partially suppressed mutant thermosensitivity. For many of the deletions, PLP had an additive rescuing effect on the mutant. Moreover, added PLP partially suppressed the thermosensitivity of and mutants and weakly suppressed an mutant, but it failed to suppress or thermosensitive mutants. Along with the ability of a deletion of to partially suppress the mutant, our results suggest that perturbations of amino acid metabolic pathways, particularly those that redirect the flow of carbon away from the synthesis of threonine, glycine, or methionine, are able to partially rescue some cell division defects. Cell division of bacteria, such as , is essential for their successful colonization. It is becoming increasingly clear that nutritional status and central metabolism can affect bacterial size and shape; for example, a metabolic enzyme (OpgH) can moonlight as a regulator of FtsZ, an essential cell division protein. Here, we demonstrate a link between amino acid metabolism and ZipA, another essential cell division protein that binds directly to FtsZ and tethers it to the cytoplasmic membrane. Our evidence suggests that altering flux through the methionine-threonine-glycine-serine pathways and supplementing with the enzyme cofactor pyridoxal-5-phosphate can partially compensate for an otherwise lethal defect in ZipA, as well as several other cell division proteins.

摘要

ZipA对于[细菌名称]的细胞分裂至关重要,它在该过程早期发挥作用,将FtsZ聚合物锚定到细胞质膜上。与FtsA一起,FtsZ和ZipA在细胞中部形成一个原环,招募其他蛋白质最终构建分裂隔膜。携带温度敏感型[等位基因名称]的细胞在富含营养的培养基中于30°C时能正常分裂,但在高于34°C的温度下停止分裂,形成长丝。在寻找[等位基因名称]的抑制子时,我们发现参与氨基酸生物合成的特定基因的缺失能够在34°C或37°C时部分挽救细胞生长和分裂,但在42°C时不能。值得注意的是,尽管一组不同的氨基酸生物合成基因缺失能够在34°C时部分挽救[细菌名称]细胞的生长,但只有与苏氨酸、甘氨酸、丝氨酸和甲硫氨酸生物合成相关的基因缺失能够在37°C时挽救生长。添加外源磷酸吡哆醛(PLP),一种受本研究影响的许多酶的辅因子,部分抑制了[突变体名称]的温度敏感性。对于许多缺失情况,PLP对[突变体名称]具有累加的挽救作用。此外,添加的PLP部分抑制了[其他突变体名称1]和[其他突变体名称2]的温度敏感性,并微弱抑制了[其他突变体名称3]突变体,但未能抑制[其他突变体名称4]或[其他突变体名称5]温度敏感型突变体。连同[基因名称]缺失能够部分抑制[突变体名称]的能力,我们的结果表明氨基酸代谢途径的扰动,特别是那些使碳流从苏氨酸、甘氨酸或甲硫氨酸合成中转移的扰动,能够部分挽救一些细胞分裂缺陷。细菌如[细菌名称]的细胞分裂对于它们的成功定殖至关重要。越来越明显的是,营养状态和中心代谢可以影响细菌的大小和形状;例如,一种代谢酶(OpgH)可以兼作FtsZ(一种必需的细胞分裂蛋白)的调节剂。在这里,我们证明了氨基酸代谢与ZipA之间的联系,ZipA是另一种必需的细胞分裂蛋白,它直接与FtsZ结合并将其连接到细胞质膜上。我们的证据表明,改变甲硫氨酸 - 苏氨酸 - 甘氨酸 - 丝氨酸途径的通量并补充酶辅因子磷酸吡哆醛可以部分补偿ZipA以及其他几种细胞分裂蛋白中原本致命的缺陷。

相似文献

1
Suppression of a Thermosensitive Cell Division Mutant by Altering Amino Acid Metabolism.
J Bacteriol. 2017 Dec 20;200(2). doi: 10.1128/JB.00535-17. Print 2018 Jan 15.
5
ZipA Uses a Two-Pronged FtsZ-Binding Mechanism Necessary for Cell Division.
mBio. 2021 Dec 21;12(6):e0252921. doi: 10.1128/mbio.02529-21. Epub 2021 Dec 14.
6
A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli.
Proc Natl Acad Sci U S A. 2003 Apr 1;100(7):4197-202. doi: 10.1073/pnas.0635003100. Epub 2003 Mar 12.
8
Direct Interaction between the Two Z Ring Membrane Anchors FtsA and ZipA.
J Bacteriol. 2019 Jan 28;201(4). doi: 10.1128/JB.00579-18. Print 2019 Feb 15.
9
10
ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains.
J Bacteriol. 2000 Sep;182(18):5153-66. doi: 10.1128/JB.182.18.5153-5166.2000.

引用本文的文献

1
Bacterial cell proliferation: from molecules to cells.
FEMS Microbiol Rev. 2021 Jan 8;45(1). doi: 10.1093/femsre/fuaa046.
3
A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium .
Front Mol Biosci. 2019 May 10;6:32. doi: 10.3389/fmolb.2019.00032. eCollection 2019.

本文引用的文献

1
Metabolism Shapes the Cell.
J Bacteriol. 2017 May 9;199(11). doi: 10.1128/JB.00039-17. Print 2017 Jun 1.
2
3
Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.
Science. 2017 Feb 17;355(6326):739-743. doi: 10.1126/science.aak9973.
4
Vitamin B6 metabolism in microbes and approaches for fermentative production.
Biotechnol Adv. 2017 Jan-Feb;35(1):31-40. doi: 10.1016/j.biotechadv.2016.11.004. Epub 2016 Nov 24.
5
Splitsville: structural and functional insights into the dynamic bacterial Z ring.
Nat Rev Microbiol. 2016 Apr;14(5):305-19. doi: 10.1038/nrmicro.2016.26. Epub 2016 Apr 4.
7
A NAD-dependent glutamate dehydrogenase coordinates metabolism with cell division in Caulobacter crescentus.
EMBO J. 2015 Jul 2;34(13):1786-800. doi: 10.15252/embj.201490730. Epub 2015 May 7.
9
Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli.
Mol Microbiol. 2015 Mar;95(6):945-70. doi: 10.1111/mmi.12906. Epub 2015 Jan 24.
10
A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division.
Mol Microbiol. 2015 Mar;95(6):925-44. doi: 10.1111/mmi.12905. Epub 2015 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验