Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.
Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
mBio. 2018 Jun 19;9(3):e01008-18. doi: 10.1128/mBio.01008-18.
ZipA is an essential cell division protein in Together with FtsA, ZipA tethers dynamic polymers of FtsZ to the cytoplasmic membrane, and these polymers are required to guide synthesis of the cell division septum. This dynamic behavior of FtsZ has been reconstituted on planar lipid surfaces , visible as GTP-dependent chiral vortices several hundred nanometers in diameter, when anchored by FtsA or when fused to an artificial membrane binding domain. However, these dynamics largely vanish when ZipA is used to tether FtsZ polymers to lipids at high surface densities. This, along with some studies in solution, has led to the prevailing notion that ZipA reduces FtsZ dynamics by enhancing bundling of FtsZ filaments. Here, we show that this is not the case. When lower, more physiological levels of the soluble, cytoplasmic domain of ZipA (sZipA) were attached to lipids, FtsZ assembled into highly dynamic vortices similar to those assembled with FtsA or other membrane anchors. Notably, at either high or low surface densities, ZipA did not stimulate lateral interactions between FtsZ protofilaments. We also used mutants that are either deficient or proficient in FtsZ bundling to provide evidence that ZipA does not directly promote bundling of FtsZ filaments Together, our results suggest that ZipA does not dampen FtsZ dynamics as previously thought, and instead may act as a passive membrane attachment for FtsZ filaments as they treadmill. Bacterial cells use a membrane-attached ring of proteins to mark and guide formation of a division septum at midcell that forms a wall separating the two daughter cells and allows cells to divide. The key protein in this ring is FtsZ, a homolog of tubulin that forms dynamic polymers. Here, we use electron microscopy and confocal fluorescence imaging to show that one of the proteins required to attach FtsZ polymers to the membrane during cell division, ZipA, can promote dynamic swirls of FtsZ on a lipid surface Importantly, these swirls are observed only when ZipA is present at low, physiologically relevant surface densities. Although ZipA has been thought to enhance bundling of FtsZ polymers, we find little evidence for bundling In addition, we present several lines of evidence indicating that ZipA does not act to directly bundle FtsZ polymers.
ZIPA 是一种必需的细胞分裂蛋白。与 FtsA 一起,ZIPA 将 FtsZ 的动态聚合物系于细胞质膜上,这些聚合物对于引导细胞分裂隔膜的合成是必需的。FtsZ 的这种动态行为已经在平面脂质表面上得到重建,当 FtsA 锚定或融合到人工膜结合域时,可见到直径几百纳米的 GTP 依赖性手性涡旋。然而,当 ZipA 用于将 FtsZ 聚合物系于脂质表面时,这种动态行为在高表面密度下会大大消失。这一点,再加上一些在溶液中的研究,导致了普遍的观点,即 ZipA 通过增强 FtsZ 丝的束集来降低 FtsZ 的动力学。在这里,我们表明事实并非如此。当较低的、更生理相关的可溶性细胞质域的 ZipA(sZipA)附着于脂质时,FtsZ 组装成高度动态的涡旋,类似于与 FtsA 或其他膜锚定组装的涡旋。值得注意的是,在高或低表面密度下,ZipA 都不会刺激 FtsZ 原丝之间的侧向相互作用。我们还使用了在 FtsZ 束集方面有缺陷或有功能的突变体,为 ZipA 不会直接促进 FtsZ 丝束集提供了证据。综上所述,我们的结果表明,ZipA 并没有像以前认为的那样抑制 FtsZ 的动力学,而是可能作为 FtsZ 丝在跑步机上运动时的被动膜附着。细菌细胞使用膜附着的蛋白质环来标记并引导在细胞中部形成一个分裂隔膜,该隔膜形成一个将两个子细胞分开的壁,并允许细胞分裂。这个环中的关键蛋白是 FtsZ,它是微管蛋白的同源物,形成动态聚合物。在这里,我们使用电子显微镜和共聚焦荧光成像来显示,在细胞分裂过程中,将 FtsZ 聚合物附着到膜上所需的一种蛋白质 ZipA,可以促进脂质表面上 FtsZ 的动态漩涡。重要的是,这些漩涡仅在 ZipA 存在于低、生理相关的表面密度时才会观察到。尽管 ZipA 被认为可以增强 FtsZ 聚合物的束集,但我们几乎没有发现束集的证据。此外,我们提供了几条证据表明,ZipA 不会直接作用于 FtsZ 聚合物来束集它们。