Smith Matthew J, Ottoni Elizabeth, Ishiyama Noboru, Goudreault Marilyn, Haman André, Meyer Claus, Tucholska Monika, Gasmi-Seabrook Genevieve, Menezes Serena, Laister Rob C, Minden Mark D, Marschalek Rolf, Gingras Anne-Claude, Hoang Trang, Ikura Mitsuhiko
Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
Nat Commun. 2017 Oct 23;8(1):1099. doi: 10.1038/s41467-017-01326-5.
Elucidation of activation mechanisms governing protein fusions is essential for therapeutic development. MLL undergoes rearrangement with numerous partners, including a recurrent translocation fusing the epigenetic regulator to a cytoplasmic RAS effector, AF6/afadin. We show here that AF6 employs a non-canonical, evolutionarily conserved α-helix to bind RAS, unique to AF6 and the classical RASSF effectors. Further, all patients with MLL-AF6 translocations express fusion proteins missing only this helix from AF6, resulting in exposure of hydrophobic residues that induce dimerization. We provide evidence that oligomerization is the dominant mechanism driving oncogenesis from rare MLL translocation partners and employ our mechanistic understanding of MLL-AF6 to examine how dimers induce leukemia. Proteomic data resolve association of dimerized MLL with gene expression modulators, and inhibiting dimerization disrupts formation of these complexes while completely abrogating leukemogenesis in mice. Oncogenic gene translocations are thus selected under pressure from protein structure/function, underscoring the complex nature of chromosomal rearrangements.
阐明蛋白质融合的激活机制对于治疗性开发至关重要。混合谱系白血病基因(MLL)与众多伙伴发生重排,包括一种常见的易位,即将表观遗传调节因子与一种细胞质RAS效应器AF6/afadin融合。我们在此表明,AF6利用一种非经典的、进化保守的α螺旋结合RAS,这是AF6和经典RASSF效应器所特有的。此外,所有患有MLL-AF6易位的患者都表达仅缺失AF6这一螺旋的融合蛋白,导致疏水残基暴露从而诱导二聚化。我们提供的证据表明,寡聚化是由罕见的MLL易位伙伴驱动肿瘤发生的主要机制,并利用我们对MLL-AF6的机制理解来研究二聚体如何诱导白血病。蛋白质组学数据解析了二聚化的MLL与基因表达调节因子的关联,抑制二聚化会破坏这些复合物的形成,同时完全消除小鼠的白血病发生。因此,致癌基因易位是在蛋白质结构/功能的压力下被选择的,突出了染色体重排的复杂性。