Suppr超能文献

循环利用的铁为赤道东太平洋的新生产提供了燃料。

Recycled iron fuels new production in the eastern equatorial Pacific Ocean.

作者信息

Rafter Patrick A, Sigman Daniel M, Mackey Katherine R M

机构信息

Department of Earth System Science, University of California, Irvine, CA, 92697, USA.

Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA.

出版信息

Nat Commun. 2017 Oct 24;8(1):1100. doi: 10.1038/s41467-017-01219-7.

Abstract

Nitrate persists in eastern equatorial Pacific surface waters because phytoplankton growth fueled by nitrate (new production) is limited by iron. Nitrate isotope measurements provide a new constraint on the controls of surface nitrate concentration in this region and allow us to quantify the degree and temporal variability of nitrate consumption. Here we show that nitrate consumption in these waters cannot be fueled solely by the external supply of iron to these waters, which occurs by upwelling and dust deposition. Rather, a substantial fraction of nitrate consumption must be supported by the recycling of iron within surface waters. Given plausible iron recycling rates, seasonal variability in nitrate concentration on and off the equator can be explained by upwelling rate, with slower upwelling allowing for more cycles of iron regeneration and uptake. The efficiency of iron recycling in the equatorial Pacific implies the evolution of ecosystem-level mechanisms for retaining iron in surface ocean settings where it limits productivity.

摘要

硝酸盐在赤道东太平洋表层水体中持续存在,因为由硝酸盐推动的浮游植物生长(新生产力)受到铁的限制。硝酸盐同位素测量为该区域表层硝酸盐浓度的控制提供了新的限制,并使我们能够量化硝酸盐消耗的程度和时间变化。我们在此表明,这些水体中的硝酸盐消耗不能仅由通过上升流和沙尘沉降进入这些水体的外部铁供应来推动。相反,硝酸盐消耗的很大一部分必须由表层水体中铁的再循环来支持。考虑到合理的铁再循环速率,赤道上和赤道外硝酸盐浓度的季节性变化可以通过上升流速率来解释,上升流较慢时允许更多的铁再生和吸收循环。赤道太平洋中铁再循环的效率意味着在表层海洋环境中保留限制生产力的铁的生态系统水平机制的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25dc/5653654/b297f00455bf/41467_2017_1219_Fig1_HTML.jpg

相似文献

1
Recycled iron fuels new production in the eastern equatorial Pacific Ocean.
Nat Commun. 2017 Oct 24;8(1):1100. doi: 10.1038/s41467-017-01219-7.
2
No iron fertilization in the equatorial Pacific Ocean during the last ice age.
Nature. 2016 Jan 28;529(7587):519-22. doi: 10.1038/nature16453.
3
Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.
Proc Natl Acad Sci U S A. 2016 May 31;113(22):6119-24. doi: 10.1073/pnas.1600616113. Epub 2016 May 16.
4
A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom.
Science. 2003 May 9;300(5621):958-61. doi: 10.1126/science.1082000.
5
Southern Ocean iron enrichment experiment: carbon cycling in high- and low-Si waters.
Science. 2004 Apr 16;304(5669):408-14. doi: 10.1126/science.1089778.
6
Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean.
Science. 2019 Sep 6;365(6457):1040-1044. doi: 10.1126/science.aax4767.
7
Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers.
Philos Trans A Math Phys Eng Sci. 2020 Oct 2;378(2181):20190361. doi: 10.1098/rsta.2019.0361. Epub 2020 Aug 31.
8
Microbial iron limitation in the ocean's twilight zone.
Nature. 2024 Sep;633(8031):823-827. doi: 10.1038/s41586-024-07905-z. Epub 2024 Sep 25.
9
Controls on tropical Pacific Ocean productivity revealed through nutrient stress diagnostics.
Nature. 2006 Aug 31;442(7106):1025-8. doi: 10.1038/nature05083.
10
Unveiling a phytoplankton hotspot at a narrow boundary between coastal and offshore waters.
Proc Natl Acad Sci U S A. 2010 Sep 21;107(38):16571-6. doi: 10.1073/pnas.1005638107. Epub 2010 Sep 7.

引用本文的文献

1
Ocean iron cycle feedbacks decouple atmospheric CO from meridional overturning circulation changes.
Nat Commun. 2024 Jul 8;15(1):5532. doi: 10.1038/s41467-024-49274-1.
4
Probing the Bioavailability of Dissolved Iron to Marine Eukaryotic Phytoplankton Using In Situ Single Cell Iron Quotas.
Global Biogeochem Cycles. 2021 Aug;35(8):e2021GB006979. doi: 10.1029/2021GB006979. Epub 2021 Aug 25.
5
Siderophores as an iron source for picocyanobacteria in deep chlorophyll maximum layers of the oligotrophic ocean.
ISME J. 2022 Jun;16(6):1636-1646. doi: 10.1038/s41396-022-01215-w. Epub 2022 Mar 3.
6
Biogeochemical feedbacks associated with the response of micronutrient recycling by zooplankton to climate change.
Glob Chang Biol. 2021 Oct;27(19):4758-4770. doi: 10.1111/gcb.15789. Epub 2021 Jul 29.
8
Aerosol trace metal leaching and impacts on marine microorganisms.
Nat Commun. 2018 Jul 5;9(1):2614. doi: 10.1038/s41467-018-04970-7.

本文引用的文献

1
Ocean dynamics, not dust, have controlled equatorial Pacific productivity over the past 500,000 years.
Proc Natl Acad Sci U S A. 2016 May 31;113(22):6119-24. doi: 10.1073/pnas.1600616113. Epub 2016 May 16.
2
No iron fertilization in the equatorial Pacific Ocean during the last ice age.
Nature. 2016 Jan 28;529(7587):519-22. doi: 10.1038/nature16453.
3
Multiple nutrient stresses at intersecting Pacific Ocean biomes detected by protein biomarkers.
Science. 2014 Sep 5;345(6201):1173-7. doi: 10.1126/science.1256450.
5
Chemically and geographically distinct solid-phase iron pools in the Southern Ocean.
Science. 2012 Nov 30;338(6111):1199-201. doi: 10.1126/science.1227504.
7
Southern Ocean dust-climate coupling over the past four million years.
Nature. 2011 Aug 3;476(7360):312-5. doi: 10.1038/nature10310.
8
Characterization of Prochlorococcus clades from iron-depleted oceanic regions.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16184-9. doi: 10.1073/pnas.1009513107. Epub 2010 Aug 23.
10
The co-evolution of phytoplankton and trace element cycles in the oceans.
Geobiology. 2008 Jun;6(3):318-24. doi: 10.1111/j.1472-4669.2008.00144.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验