Suppr超能文献

基于液相色谱-四极杆飞行时间质谱的自反馈网络用于鉴定密花八角中β-咔啉生物碱的系统辨识。

A self-feedback network based on liquid chromatography-quadrupole-time of flight mass spectrometry for system identification of β-carboline alkaloids in Picrasma quassioides.

机构信息

Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.

Key Laboratory on Protein Chemistry and Structural Biology, China Pharmaceutical University, Nanjing, 210009, China.

出版信息

Sci Rep. 2017 Oct 23;7(1):13841. doi: 10.1038/s41598-017-13106-8.

Abstract

Profiling chemical components in herbs by mass spectrometry is a challenging work because of the lack of standard compounds, especially for position isomers. This paper provides a strategy based on a self-feedback network of mass spectra (MS) data to identify chemical constituents in herbs by liquid chromatography-quadrupole-time of flight mass spectrometry without compound standards. Components sharing same skeleton were screened and all ions were classified into a database. All candidates were connected by the selected bridging ions to establish a primary MS network. Benefited from such a network, it is feasible to characterize sequentially the structures of all diagnostic ions and candidates once single component has been de novo identified. Taking Picrasma quassioides as an example, the primary network of β-carbolines was established with 65 ions (selected from 76 β-carbolines), each of which appeared at least in four compounds. Once an alkaloid has been identified, its logical ions could feedback into primary network to build pathways with other unknown compounds. Moreover, the position of the substituent groups could be deduced through the secondary metabolic pathways of alkaloids (plant secondary metabolism). The network therefore can be utilized for identification of unknown compounds and even their position isomers.

摘要

采用质谱技术对中草药中的化学成分进行分析是一项极具挑战性的工作,因为缺乏标准化合物,特别是对于位置异构体。本文提出了一种基于质谱(MS)数据的自反馈网络策略,在没有化合物标准品的情况下,通过液相色谱-四极杆飞行时间质谱技术来鉴定中草药中的化学成分。筛选具有相同骨架的成分,并将所有离子分类到数据库中。通过选择的桥接离子将所有候选物连接起来,建立主要的 MS 网络。得益于这样的网络,一旦鉴定出单一成分,就可以通过逐步特征化所有诊断离子和候选物的结构来实现。以青天葵为例,建立了 65 个β-咔啉离子(从 76 个β-咔啉中选择)的主要网络,每个离子至少出现在四个化合物中。一旦鉴定出一种生物碱,其逻辑离子就可以反馈到主网络中,与其他未知化合物建立通路。此外,通过生物碱的次生代谢途径(植物次生代谢)可以推断取代基的位置。因此,该网络可用于鉴定未知化合物,甚至是它们的位置异构体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ac8/5653770/d4191b317419/41598_2017_13106_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验