Suppr超能文献

全基因组关联研究时代后的数据分析

Data analysis in the post-genome-wide association study era.

作者信息

Wang Qiao-Ling, Tan Wen-Le, Zhao Yan-Jie, Shao Ming-Ming, Chu Jia-Hui, Huang Xu-Dong, Li Jun, Luo Ying-Ying, Peng Lin-Na, Cui Qiong-Hua, Feng Ting, Yang Jie, Han Ya-Ling

机构信息

Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.

出版信息

Chronic Dis Transl Med. 2016 Dec 21;2(4):231-234. doi: 10.1016/j.cdtm.2016.11.009. eCollection 2016 Dec.

Abstract

Since the first report of a genome-wide association study (GWAS) on human age-related macular degeneration, GWAS has successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for clinical applications.

摘要

自从首次报道关于人类年龄相关性黄斑变性的全基因组关联研究(GWAS)以来,GWAS已成功用于发现多种复杂人类疾病和/或性状的遗传变异,并且已鉴定出数千个相关基因座。然而,这些基因座的潜在机制在很大程度上仍然未知。为了使这些GWAS研究结果更有用,有必要进行深入的数据挖掘。GWAS后时代的数据分析将包括以下几个方面:对易感区域进行精细定位以鉴定易感基因,从而阐明生物学作用机制;对不同疾病中的易感基因进行联合分析;整合GWAS、转录组和表观遗传数据,在全基因组水平分析表达和甲基化数量性状基因座,并找到影响基因表达和DNA甲基化的单核苷酸多态性;对疾病相关的DNA拷贝数变异进行全基因组关联分析。应用这些策略和方法将有助于强化GWAS数据,提高GWAS在增进对复杂疾病或性状遗传学理解方面的效用和意义,并将这些研究结果转化为临床应用。

相似文献

1
Data analysis in the post-genome-wide association study era.全基因组关联研究时代后的数据分析
Chronic Dis Transl Med. 2016 Dec 21;2(4):231-234. doi: 10.1016/j.cdtm.2016.11.009. eCollection 2016 Dec.
3
7
Association mapping in plants in the post-GWAS genomics era.后 GWAS 基因组学时代的植物关联作图
Adv Genet. 2019;104:75-154. doi: 10.1016/bs.adgen.2018.12.001. Epub 2019 Jan 22.

本文引用的文献

4
Genetic study of complex diseases in the post-GWAS era.全基因组关联研究(GWAS)时代之后复杂疾病的遗传学研究
J Genet Genomics. 2015 Mar 20;42(3):87-98. doi: 10.1016/j.jgg.2015.02.001. Epub 2015 Feb 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验