Suppr超能文献

在各个卫生系统中实现知识的一致呈现。

Representing Knowledge Consistently Across Health Systems.

作者信息

Rosenbloom S T, Carroll R J, Warner J L, Matheny M E, Denny J C

出版信息

Yearb Med Inform. 2017 Aug;26(1):139-147. doi: 10.15265/IY-2017-018. Epub 2017 Sep 11.

Abstract

Electronic health records (EHRs) have increasingly emerged as a powerful source of clinical data that can be leveraged for reuse in research and in modular health apps that integrate into diverse health information technologies. A key challenge to these use cases is representing the knowledge contained within data from different EHR systems in a uniform fashion. We reviewed several recent studies covering the knowledge representation in the common data models for the Observational Medical Outcomes Partnership (OMOP) and its Observational Health Data Sciences and Informatics program, and the United States Patient Centered Outcomes Research Network (PCORNet). We also reviewed the Health Level 7 Fast Healthcare Interoperability Resource standard supporting app-like programs that can be used across multiple EHR and research systems. There has been a recent growth in high-impact efforts to support quality-assured and standardized clinical data sharing across different institutions and EHR systems. We focused on three major efforts as part of a larger landscape moving towards shareable, transportable, and computable clinical data. The growth in approaches to developing common data models to support interoperable knowledge representation portends an increasing availability of high-quality clinical data in support of research. Building on these efforts will allow a future whereby significant portions of the populations in the world may be able to share their data for research.

摘要

电子健康记录(EHRs)已日益成为临床数据的强大来源,可用于研究以及集成到各种健康信息技术中的模块化健康应用程序中进行再利用。这些用例面临的一个关键挑战是以统一的方式表示来自不同EHR系统的数据中所包含的知识。我们回顾了最近的几项研究,这些研究涵盖了观察性医疗成果合作组织(OMOP)及其观察性健康数据科学与信息学计划以及美国以患者为中心的成果研究网络(PCORNet)的通用数据模型中的知识表示。我们还回顾了支持可跨多个EHR和研究系统使用的类似应用程序的健康级别7快速医疗保健互操作性资源标准。最近,为支持跨不同机构和EHR系统进行质量保证和标准化临床数据共享而进行的高影响力努力有所增加。作为朝着可共享、可传输和可计算临床数据发展的更大格局的一部分,我们重点关注了三项主要努力。开发通用数据模型以支持可互操作知识表示的方法的增加预示着支持研究的高质量临床数据的可用性将不断提高。在这些努力的基础上,未来世界上很大一部分人口或许能够共享他们的数据用于研究。

相似文献

1
Representing Knowledge Consistently Across Health Systems.
Yearb Med Inform. 2017 Aug;26(1):139-147. doi: 10.15265/IY-2017-018. Epub 2017 Sep 11.
3
Promoting national and international standards to build interoperable clinical applications.
AMIA Annu Symp Proc. 2018 Dec 5;2018:555-563. eCollection 2018.
4
Archetype-based data warehouse environment to enable the reuse of electronic health record data.
Int J Med Inform. 2015 Sep;84(9):702-14. doi: 10.1016/j.ijmedinf.2015.05.016. Epub 2015 Jun 1.
5
Data interchange using i2b2.
J Am Med Inform Assoc. 2016 Sep;23(5):909-15. doi: 10.1093/jamia/ocv188. Epub 2016 Feb 5.
7
Integration of Hospital Information and Clinical Decision Support Systems to Enable the Reuse of Electronic Health Record Data.
Methods Inf Med. 2017 May 18;56(3):238-247. doi: 10.3414/ME16-01-0057. Epub 2017 Mar 31.
9
Electronic health record standards.
Yearb Med Inform. 2006:136-44.
10
Representing knowledge, data and concepts for EHRS using DCM.
Stud Health Technol Inform. 2011;169:774-8.

引用本文的文献

1
Data Interoperability and Harmonization in Cardiovascular Genomic and Precision Medicine.
Circ Genom Precis Med. 2025 Jun;18(3):e004624. doi: 10.1161/CIRCGEN.124.004624. Epub 2025 May 9.
2
Application of an Externally Developed Algorithm to Identify Research Cases and Controls from EHR Data: Trials and Triumphs.
Appl Clin Inform. 2025 Mar;16(2):314-326. doi: 10.1055/a-2524-5216. Epub 2025 Jan 24.
3
5
Geospatial Imprecision With Constraints for Precision Public Health: Algorithm Development and Validation.
Online J Public Health Inform. 2024 May 21;16:e54958. doi: 10.2196/54958.
6
A hybrid adaptive approach for instance transfer learning with dynamic and imbalanced data.
Int J Intell Syst. 2022 Dec;37(12):11582-11599. doi: 10.1002/int.23055. Epub 2022 Sep 2.
8
A Systematic Review of Crohn's Disease Case Definitions in Administrative or Claims Databases.
Inflamm Bowel Dis. 2023 May 2;29(5):705-715. doi: 10.1093/ibd/izac131.
9
New Data Resources, Linkages, and Infrastructure for Cancer Health Economics Research: Main Topics From a Panel Discussion.
J Natl Cancer Inst Monogr. 2022 Jul 5;2022(59):68-73. doi: 10.1093/jncimonographs/lgac016.

本文引用的文献

1
Opening the Duke electronic health record to apps: Implementing SMART on FHIR.
Int J Med Inform. 2017 Mar;99:1-10. doi: 10.1016/j.ijmedinf.2016.12.005. Epub 2016 Dec 12.
2
Accuracy of an automated knowledge base for identifying drug adverse reactions.
J Biomed Inform. 2017 Feb;66:72-81. doi: 10.1016/j.jbi.2016.12.005. Epub 2016 Dec 16.
3
Evaluating common data models for use with a longitudinal community registry.
J Biomed Inform. 2016 Dec;64:333-341. doi: 10.1016/j.jbi.2016.10.016. Epub 2016 Oct 29.
5
An information model for computable cancer phenotypes.
BMC Med Inform Decis Mak. 2016 Sep 15;16(1):121. doi: 10.1186/s12911-016-0358-4.
6
Converting ODM Metadata to FHIR Questionnaire Resources.
Stud Health Technol Inform. 2016;228:456-60.
9
Characterizing treatment pathways at scale using the OHDSI network.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7329-36. doi: 10.1073/pnas.1510502113. Epub 2016 Jun 6.
10
SMART-on-FHIR implemented over i2b2.
J Am Med Inform Assoc. 2017 Mar 1;24(2):398-402. doi: 10.1093/jamia/ocw079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验