Suppr超能文献

评估用于纵向社区登记处的通用数据模型。

Evaluating common data models for use with a longitudinal community registry.

作者信息

Garza Maryam, Del Fiol Guilherme, Tenenbaum Jessica, Walden Anita, Zozus Meredith Nahm

机构信息

Duke Translational Medicine Institute, Duke University, 2424 Erwin Road, Hock Plaza Box 3850, Durham, NC 27705, USA.

Department of Biomedical Informatics, University of Utah School of Medicine, 421 Wakara Way, Room: Suite 140, Salt Lake City, UT 84108, USA.

出版信息

J Biomed Inform. 2016 Dec;64:333-341. doi: 10.1016/j.jbi.2016.10.016. Epub 2016 Oct 29.

Abstract

OBJECTIVE

To evaluate common data models (CDMs) to determine which is best suited for sharing data from a large, longitudinal, electronic health record (EHR)-based community registry.

MATERIALS AND METHODS

Four CDMs were chosen from models in use for clinical research data: Sentinel v5.0 (referred to as the Mini-Sentinel CDM in previous versions), PCORnet v3.0 (an extension of the Mini-Sentinel CDM), OMOP v5.0, and CDISC SDTM v1.4. Each model was evaluated against 11 criteria adapted from previous research. The criteria fell into six categories: content coverage, integrity, flexibility, ease of querying, standards compatibility, and ease and extent of implementation.

RESULTS

The OMOP CDM accommodated the highest percentage of our data elements (76%), fared well on other requirements, and had broader terminology coverage than the other models. Sentinel and PCORnet fell short in content coverage with 37% and 48% matches respectively. Although SDTM accommodated a significant percentage of data elements (55% true matches), 45% of the data elements mapped to SDTM's extension mechanism, known as Supplemental Qualifiers, increasing the number of joins required to query the data.

CONCLUSION

The OMOP CDM best met the criteria for supporting data sharing from longitudinal EHR-based studies. Conclusions may differ for other uses and associated data element sets, but the methodology reported here is easily adaptable to common data model evaluation for other uses.

摘要

目的

评估通用数据模型(CDM),以确定哪种模型最适合共享来自基于电子健康记录(EHR)的大型纵向社区注册库的数据。

材料与方法

从用于临床研究数据的模型中选取了四个CDM:Sentinel v5.0(在以前版本中称为Mini-Sentinel CDM)、PCORnet v3.0(Mini-Sentinel CDM的扩展)、OMOP v5.0和CDISC SDTM v1.4。根据先前研究改编的11条标准对每个模型进行评估。这些标准分为六类:内容覆盖范围、完整性、灵活性、查询便利性、标准兼容性以及实施的难易程度和范围。

结果

OMOP CDM涵盖了我们数据元素的最高百分比(76%),在其他要求方面表现良好,并且术语覆盖范围比其他模型更广。Sentinel和PCORnet在内容覆盖方面表现欠佳,匹配率分别为37%和48%。虽然SDTM涵盖了相当比例的数据元素(55%为真正匹配),但45%的数据元素映射到了SDTM的扩展机制,即补充限定词,这增加了查询数据所需的连接数量。

结论

OMOP CDM最符合支持基于纵向EHR研究的数据共享的标准。对于其他用途和相关数据元素集,结论可能会有所不同,但此处报告的方法很容易适用于其他用途的通用数据模型评估。

相似文献

1
Evaluating common data models for use with a longitudinal community registry.
J Biomed Inform. 2016 Dec;64:333-341. doi: 10.1016/j.jbi.2016.10.016. Epub 2016 Oct 29.
3
Developing an ETL tool for converting the PCORnet CDM into the OMOP CDM to facilitate the COVID-19 data integration.
J Biomed Inform. 2022 Mar;127:104002. doi: 10.1016/j.jbi.2022.104002. Epub 2022 Jan 22.
4
Standardizing registry data to the OMOP Common Data Model: experience from three pulmonary hypertension databases.
BMC Med Res Methodol. 2021 Nov 2;21(1):238. doi: 10.1186/s12874-021-01434-3.
7
Data interchange using i2b2.
J Am Med Inform Assoc. 2016 Sep;23(5):909-15. doi: 10.1093/jamia/ocv188. Epub 2016 Feb 5.
8
Transformation of Electronic Health Records and Questionnaire Data to OMOP CDM: A Feasibility Study Using SG_T2DM Dataset.
Appl Clin Inform. 2021 Aug;12(4):757-767. doi: 10.1055/s-0041-1732301. Epub 2021 Aug 11.

引用本文的文献

1
Advancing Global Cancer Symptom Science: Insights and Strategies from the Inaugural Cancer Symptom Science Expert Meeting.
Semin Oncol Nurs. 2025 Aug;41(4):151905. doi: 10.1016/j.soncn.2025.151905. Epub 2025 Aug 5.
3
Standards in sync: five principles to achieve semantic interoperability for TRUE research for healthcare.
Front Digit Health. 2025 Jun 5;7:1567624. doi: 10.3389/fdgth.2025.1567624. eCollection 2025.
5
Data Interoperability and Harmonization in Cardiovascular Genomic and Precision Medicine.
Circ Genom Precis Med. 2025 Jun;18(3):e004624. doi: 10.1161/CIRCGEN.124.004624. Epub 2025 May 9.
6
Perspective review: Will generative AI make common data models obsolete in future analyses of distributed data networks?
Ther Adv Drug Saf. 2025 Apr 21;16:20420986251332743. doi: 10.1177/20420986251332743. eCollection 2025.
7
Clinical Research Informatics: a Decade-in-Review.
Yearb Med Inform. 2024 Aug;33(1):127-142. doi: 10.1055/s-0044-1800732. Epub 2025 Apr 8.
9
Application of an Externally Developed Algorithm to Identify Research Cases and Controls from EHR Data: Trials and Triumphs.
Appl Clin Inform. 2025 Mar;16(2):314-326. doi: 10.1055/a-2524-5216. Epub 2025 Jan 24.
10
ETL: From the German Health Data Lab data formats to the OMOP Common Data Model.
PLoS One. 2025 Jan 6;20(1):e0311511. doi: 10.1371/journal.pone.0311511. eCollection 2025.

本文引用的文献

2
3
The HMO Research Network Virtual Data Warehouse: A Public Data Model to Support Collaboration.
EGEMS (Wash DC). 2014 Mar 24;2(1):1049. doi: 10.13063/2327-9214.1049. eCollection 2014.
8
Data model considerations for clinical effectiveness researchers.
Med Care. 2012 Jul;50 Suppl(0):S60-7. doi: 10.1097/MLR.0b013e318259bff4.
9
Practices and perspectives on building integrated data repositories: results from a 2010 CTSA survey.
J Am Med Inform Assoc. 2012 Jun;19(e1):e119-24. doi: 10.1136/amiajnl-2011-000508. Epub 2012 Mar 21.
10
Validation of a common data model for active safety surveillance research.
J Am Med Inform Assoc. 2012 Jan-Feb;19(1):54-60. doi: 10.1136/amiajnl-2011-000376. Epub 2011 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验