Suppr超能文献

从规范的快速医疗互操作性资源数据存储库中自动生成研究数据集市:在 COVID-19 研究中的应用。

Automated production of research data marts from a canonical fast healthcare interoperability resource data repository: applications to COVID-19 research.

机构信息

Biomedical Informatics Center, Medical University of South Carolina, Charleston, South Carolina, USA.

Health Sciences South Carolina, Columbia, South Carolina, USA.

出版信息

J Am Med Inform Assoc. 2021 Jul 30;28(8):1605-1611. doi: 10.1093/jamia/ocab108.

Abstract

OBJECTIVE

The rapidly evolving COVID-19 pandemic has created a need for timely data from the healthcare systems for research. To meet this need, several large new data consortia have been developed that require frequent updating and sharing of electronic health record (EHR) data in different common data models (CDMs) to create multi-institutional databases for research. Traditionally, each CDM has had a custom pipeline for extract, transform, and load operations for production and incremental updates of data feeds to the networks from raw EHR data. However, the demands of COVID-19 research for timely data are far higher, and the requirements for updating faster than previous collaborative research using national data networks have increased. New approaches need to be developed to address these demands.

METHODS

In this article, we describe the use of the Fast Healthcare Interoperability Resource (FHIR) data model as a canonical data model and the automated transformation of clinical data to the Patient-Centered Outcomes Research Network (PCORnet) and Observational Medical Outcomes Partnership (OMOP) CDMs for data sharing and research collaboration on COVID-19.

RESULTS

FHIR data resources could be transformed to operational PCORnet and OMOP CDMs with minimal production delays through a combination of real-time and postprocessing steps, leveraging the FHIR data subscription feature.

CONCLUSIONS

The approach leverages evolving standards for the availability of EHR data developed to facilitate data exchange under the 21st Century Cures Act and could greatly enhance the availability of standardized datasets for research.

摘要

目的

快速演变的 COVID-19 大流行需要及时从医疗保健系统获取数据以开展研究。为满足这一需求,开发了多个大型新数据联盟,这些联盟需要频繁更新并以不同的通用数据模型 (CDM) 共享电子健康记录 (EHR) 数据,以创建用于研究的多机构数据库。传统上,每个 CDM 都有一个自定义的提取、转换和加载 (ETL) 管道,用于从原始 EHR 数据生产和增量更新到网络的数据馈送。然而,COVID-19 研究对数据的及时性要求要高得多,并且对使用国家数据网络进行的先前协作研究的更新速度的要求也有所提高。需要开发新方法来满足这些需求。

方法

在本文中,我们描述了使用 Fast Healthcare Interoperability Resource (FHIR) 数据模型作为规范数据模型,以及将临床数据自动转换为 Patient-Centered Outcomes Research Network (PCORnet) 和 Observational Medical Outcomes Partnership (OMOP) CDM 的方法,以实现 COVID-19 数据共享和研究协作。

结果

FHIR 数据资源可以通过实时和后处理步骤的组合转换为操作 PCORnet 和 OMOP CDM,几乎没有生产延迟,从而利用 FHIR 数据订阅功能。

结论

该方法利用了为促进 21 世纪治愈法案下的数据交换而开发的 EHR 数据可用性的演进标准,这将极大地增强标准化数据集在研究中的可用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8560/8324244/571bf0fa6de2/ocab108f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验