Melchior Jan-Patrick, Frick Bernhard
Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Phys Chem Chem Phys. 2017 Nov 1;19(42):28540-28554. doi: 10.1039/c7cp04116k.
The unique proton conduction mechanism of phosphoric acid is important for the functions of complex phosphate containing biological and technological systems (e.g. phospholipid membranes and polybenzimidazole phosphoric acid membranes for high-temperature PEM fuel cells). In neat phosphoric acid structural proton diffusion, i.e. proton hopping between phosphoric acid molecules, is superimposed onto hydrodynamic diffusion of the molecules in the viscous liquid. In this study we separate the two dynamic contributions on the nanosecond timescale for the model systems phosphoric acid-water and phosphoric acid-benzimidazole. We demonstrate that H NMR dipolar relaxation measurements are controlled by hydrodynamic diffusion for the investigated conditions, while O NMR quadrupolar relaxation measurements reflect local proton displacement as part of structural diffusion. Quasielastic neutron scattering (QENS) applying high resolution backscattering spectroscopy (nBSS) confirms structural proton diffusion measurements using PFG-NMR in phosphoric acid-benzimidazole mixtures at different concentrations. With increasing benzimidazole content proton diffusion coefficients on the nanosecond scale decrease, thus following the trend of reduced hydrogen bond network frustration. The momentum transfer (Q) dependence of the width of the QENS spectra indicates the jump diffusion mechanism and can be scaled to a master plot both for different temperatures and different benzimidazole contents. This indicates a fundamentally unchanged structural proton diffusion process, however, with a lower probability of occurrence for successful intermolecular proton transfer with increasing benzimidazole content. Results of this work enable a better separation of different diffusion processes on short timescales also in more complex phosphoric acid containing systems.
磷酸独特的质子传导机制对于含复杂磷酸盐的生物和技术系统(如用于高温质子交换膜燃料电池的磷脂膜和聚苯并咪唑磷酸膜)的功能至关重要。在纯磷酸中,结构质子扩散,即质子在磷酸分子之间的跳跃,叠加在粘性液体中分子的流体动力学扩散之上。在本研究中,我们在纳秒时间尺度上分离了磷酸 - 水和磷酸 - 苯并咪唑模型系统的两种动力学贡献。我们证明,在所研究的条件下,H NMR偶极弛豫测量受流体动力学扩散控制,而O NMR四极弛豫测量反映了作为结构扩散一部分的局部质子位移。应用高分辨率背散射光谱(nBSS)的准弹性中子散射(QENS)证实了在不同浓度的磷酸 - 苯并咪唑混合物中使用PFG - NMR进行的结构质子扩散测量。随着苯并咪唑含量的增加,纳秒尺度上的质子扩散系数降低,从而遵循氢键网络受挫程度降低的趋势。QENS谱线宽度的动量转移(Q)依赖性表明了跳跃扩散机制,并且对于不同温度和不同苯并咪唑含量都可以缩放到一个主图。这表明结构质子扩散过程在本质上没有变化,然而,随着苯并咪唑含量的增加,分子间质子转移成功发生的概率降低。这项工作的结果使得在更复杂的含磷酸系统中也能在短时间尺度上更好地分离不同的扩散过程。