Suppr超能文献

为什么质子传导聚苯并咪唑磷酸膜在高温质子交换膜燃料电池中表现良好?

Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?

作者信息

Melchior Jan-Patrick, Majer Günter, Kreuer Klaus-Dieter

机构信息

Max-Planck-Institut für Festkörperforschung, Stuttgart, Germany.

Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany.

出版信息

Phys Chem Chem Phys. 2016 Dec 21;19(1):601-612. doi: 10.1039/c6cp05331a.

Abstract

Transport properties and hydration behavior of phosphoric acid/(benz)imidazole mixtures are investigated by diverse NMR techniques, thermogravimetric analysis (TGA) and conductivity measurements. The monomeric systems can serve as models for phosphoric acid/poly-benzimidazole membranes which are known for their exceptional performance in high temperature PEM fuel cells. H- and P-NMR data show benzimidazole acting as a strong Brønsted base with respect to neat phosphoric acid. Since benzimidazole's nitrogens are fully protonated with a low rate for proton exchange with phosphate species, proton diffusion and conduction processes must take place within the hydrogen bond network of phosphoric acid only. The proton exchange dynamics between phosphate and benzimidazole species pass through the intermediate exchange regime (with respect to NMR line separations) with exchange times being close to typical diffusion times chosen in PFG-NMR diffusion measurements (ms regime). The resulting effects, as described by the Kärger equation, are included into the evaluation of PFG-NMR data for obtaining precise proton diffusion coefficients. The highly reduced proton diffusion coefficient within the phosphoric acid part of the model systems compared to neat phosphoric acid is suggested to be the immediate consequence of proton subtraction from phosphoric acid. This reduces hydrogen bond network frustration (imbalance of the number of proton donors and acceptors) and therefore also the rate of structural proton diffusion, phosphoric acid's acidity and hygroscopicity. Reduced water uptake, shown by TGA, goes along with reduced electroosmotic water drag which is suggested to be the reason for PBI-phosphoric acid membranes performing better in fuel cells than other phosphoric-acid-containing electrolytes with higher protonic conductivity.

摘要

通过多种核磁共振技术、热重分析(TGA)和电导率测量,研究了磷酸/(苯)咪唑混合物的传输性质和水合行为。单体体系可作为磷酸/聚苯并咪唑膜的模型,该膜在高温质子交换膜燃料电池中具有卓越性能。氢和磷核磁共振数据表明,相对于纯磷酸,苯并咪唑作为一种强布朗斯特碱。由于苯并咪唑的氮原子被完全质子化,与磷酸根离子的质子交换速率较低,因此质子扩散和传导过程必须仅在磷酸的氢键网络内发生。磷酸根和苯并咪唑物种之间的质子交换动力学通过中间交换区域(相对于核磁共振谱线分离),交换时间接近脉冲场梯度核磁共振(PFG-NMR)扩散测量中选择的典型扩散时间(毫秒范围)。如卡尔格方程所述的结果效应,被纳入PFG-NMR数据评估中,以获得精确的质子扩散系数。与纯磷酸相比,模型体系中磷酸部分的质子扩散系数大幅降低,这被认为是磷酸中质子被夺取的直接结果。这减少了氢键网络的受挫(质子供体和受体数量的不平衡),因此也降低了结构质子扩散速率、磷酸的酸度和吸湿性。热重分析显示的吸水量降低,与电渗水拖曳的降低相伴,这被认为是聚苯并咪唑-磷酸膜在燃料电池中比其他具有更高质子传导率的含磷酸电解质表现更好的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验