INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000, Bahía Blanca, Argentina.
Planta Piloto de Ingeniería Química (PLAPIQUI-UNS-CONICET), Camino La Carrindanga km 7, 8000, Bahía Blanca, Argentina.
Bioprocess Biosyst Eng. 2018 Feb;41(2):171-184. doi: 10.1007/s00449-017-1855-2. Epub 2017 Oct 24.
Magnetic biocatalysts offer enormous advantages over traditional ones. Their ability to be isolated by means of a magnet, in combination with their extensive reuse possibilities, makes them highly attractive and competitive from the commercial point of view. In this work, magnetic biocatalysts were prepared by immobilization of Candida antarctica Lipase B (E.C. 3.1.1.3, CALB) on magnetite-lysine nanoparticles. Two methodologies were explored tending to find the optimal biocatalyst in terms of its practical implementation: I-physical adsorption of CALB followed by cross-linking, and II-covalent coupling of the lipase on the nanoparticles surface. Both procedures involved the use of glutaraldehyde (GLUT) as cross-linker or coupling agent, respectively. A range of GLUT concentrations was evaluated in method I and the optimum one, in terms of efficiency and operational stability, was chosen to induce the covalent linkage CALB-support in method II. The chosen test reaction was solvent-free ethyl oleate synthesis. Method I produced operationally unstable catalysts that deactivated totally in four to six cycles. On the other hand, covalently attached CALB (method II) preserved 60% of its initial activity after eight cycles and also retained 90% of its initial activity along 6 weeks in storage. CALB immobilization by covalent linkage using controlled GLUT concentration appears as the optimum methodology to asses efficient and stable biocatalysts. The materials prepared within this work may be competitive with commercially available biocatalysts.
磁性生物催化剂相对于传统生物催化剂具有巨大的优势。它们可以通过磁体分离的能力,结合其广泛的重复使用可能性,从商业角度来看极具吸引力和竞争力。在这项工作中,通过将南极假丝酵母脂肪酶 B(E.C. 3.1.1.3,CALB)固定在磁铁矿-赖氨酸纳米颗粒上制备了磁性生物催化剂。探索了两种方法,旨在找到在实际应用方面最佳的生物催化剂:I-通过物理吸附 CALB 然后交联,和 II-在纳米颗粒表面上共价偶联脂肪酶。这两种方法都涉及使用戊二醛(GLUT)作为交联剂或偶联剂。在方法 I 中评估了一系列 GLUT 浓度,选择了在效率和操作稳定性方面最佳的浓度,用于在方法 II 中诱导 CALB-载体的共价键合。选择的测试反应是无溶剂油酸乙酯合成。方法 I 产生了操作不稳定的催化剂,在四到六个循环中完全失活。另一方面,通过共价键合固定的 CALB(方法 II)在八个循环后保留了 60%的初始活性,并且在 6 周的储存期间保留了 90%的初始活性。使用受控 GLUT 浓度通过共价键合固定 CALB 似乎是评估高效和稳定生物催化剂的最佳方法。本工作中制备的材料可能具有竞争力,可与市售生物催化剂相媲美。