Multifunctional Materials & Composites (MMC) Laboratory, Department of Engineering Science, University of Oxford , Parks Road, Oxford OX1 3PJ, United Kingdom.
ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39839-39854. doi: 10.1021/acsami.7b13402. Epub 2017 Nov 2.
The mechanical properties of individual nanocrystals and small micron-sized single crystals of metal-organic frameworks (MOFs), hitherto, cannot be measured directly by employing the conventional instrumented nanoindentation approach. Here we propose the application of atomic force microscopy (AFM)-based nanoindentation technique, equipped with a calibrated diamond cube-corner indenter tip to quantify the Young's modulus, hardness, adhesion energy, and interfacial and fracture strengths of a zeolitic imidazolate framework (ZIF-8) porous material. We use ZIF-8 as a model MOF system to develop AFM nanoindentation leveraging the concept of unloading strain rate, enabling us to critically assess the practicality and technical limitations of AFM to achieve quantitative measurements of fine-scale MOF crystals. We demonstrate the advantages of using a high unloading strain rate (ε̇ > 60 s) to yield reliable force-displacement data in the few μN load range, corresponding to a shallow indentation depth of ∼10s nm. We found that the Young's moduli (∼3-4 GPa) determined by AFM nanoindentation of the nanocrystals (<500 nm) and micron-sized crystals (∼2 μm) are in agreement with magnitudes derived previously from other techniques, namely instrumented nanoindentation and Brillouin spectroscopy (however, these methods requiring large 100-μm sized crystals) and also in line with density functional theory predictions of an idealized ZIF-8 crystal.
迄今为止,通过传统的仪器化纳米压痕方法,无法直接测量金属有机骨架(MOF)的单个纳米晶体和小尺寸微米级单晶的力学性能。在此,我们提出了原子力显微镜(AFM)-基础纳米压痕技术的应用,该技术配备了校准的金刚石立方角压头,以量化沸石咪唑酯骨架(ZIF-8)多孔材料的杨氏模量、硬度、粘附能以及界面和断裂强度。我们使用 ZIF-8 作为模型 MOF 系统,利用卸载应变速率的概念来开发 AFM 纳米压痕,使我们能够严格评估 AFM 实现精细 MOF 晶体定量测量的实用性和技术局限性。我们展示了使用高卸载应变速率(ε̇ > 60 s)的优势,可在几 μN 的负载范围内获得可靠的力-位移数据,对应的压痕深度约为 10s nm。我们发现,通过 AFM 纳米压痕测量纳米晶体(<500 nm)和微米级晶体(∼2 μm)的杨氏模量(∼3-4 GPa)与先前从其他技术(即仪器化纳米压痕和布里渊光谱学)获得的数值一致(然而,这些方法需要 100-μm 大小的大晶体),也与理想 ZIF-8 晶体的密度泛函理论预测一致。