Lindner Florian P, Strasser Nina, Schultze Martin, Wieser Sandro, Slugovc Christian, Elsayad Kareem, Koski Kristie J, Zojer Egbert, Czibula Caterina
Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
J Phys Chem Lett. 2025 Feb 6;16(5):1213-1220. doi: 10.1021/acs.jpclett.4c03070. Epub 2025 Jan 25.
The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2. The experiments are combined with state-of-the-art simulations of elastic properties and phonon bands, which are based on machine-learning force fields and dispersion-corrected density functional theory. This provides a comprehensive understanding of the experimental signals, which can be correlated to the longitudinal and transverse sound velocities of the material. Notably, the combination of the insights from simulations and experiments allows the determination of approximate values for the components of the elastic tensor of the studied material even when dealing with comparably small single crystals, which limit the range of accessible experimental data.
金属有机框架材料(MOFs)的力学性能具有高度的基础和实际意义。一种特别引人关注的用于确定各向异性弹性张量的技术是布里渊散射,到目前为止,这种技术很少用于像MOFs这样高度复杂的材料。在本论文中,我们应用该技术研究一种新合成的MOF型材料,称为GUT2。实验与基于机器学习力场和色散校正密度泛函理论的弹性性质和声子能带的最新模拟相结合。这提供了对实验信号的全面理解,这些信号可以与材料的纵向和横向声速相关联。值得注意的是,模拟和实验的见解相结合,即使在处理相对较小的单晶时(这限制了可获取的实验数据范围),也能够确定所研究材料弹性张量分量的近似值。