Suppr超能文献

孕期体重的轨迹建模:一种功能主成分分析方法。

Trajectory modeling of gestational weight: A functional principal component analysis approach.

作者信息

Che Menglu, Kong Linglong, Bell Rhonda C, Yuan Yan

机构信息

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada.

出版信息

PLoS One. 2017 Oct 24;12(10):e0186761. doi: 10.1371/journal.pone.0186761. eCollection 2017.

Abstract

Suboptimal gestational weight gain (GWG), which is linked to increased risk of adverse outcomes for a pregnant woman and her infant, is prevalent. In the study of a large cohort of Canadian pregnant women, our goals are to estimate the individual weight growth trajectory using sparsely collected bodyweight data, and to identify the factors affecting the weight change during pregnancy, such as prepregnancy body mass index (BMI), dietary intakes and physical activity. The first goal was achieved through functional principal component analysis (FPCA) by conditional expectation. For the second goal, we used linear regression with the total weight gain as the response variable. The trajectory modeling through FPCA had a significantly smaller root mean square error (RMSE) and improved adaptability than the classic nonlinear mixed-effect models, demonstrating a novel tool that can be used to facilitate real time monitoring and interventions of GWG. Our regression analysis showed that prepregnancy BMI had a high predictive value for the weight changes during pregnancy, which agrees with the published weight gain guideline.

摘要

孕期体重增加不足(GWG)与孕妇及其婴儿不良结局风险增加相关,且较为普遍。在一项针对大量加拿大孕妇的研究中,我们的目标是利用稀疏收集的体重数据估计个体体重增长轨迹,并确定影响孕期体重变化的因素,如孕前体重指数(BMI)、饮食摄入和身体活动。第一个目标是通过条件期望的功能主成分分析(FPCA)实现的。对于第二个目标,我们使用以总体重增加为响应变量的线性回归。与经典非线性混合效应模型相比,通过FPCA进行的轨迹建模具有显著更小的均方根误差(RMSE)和更好的适应性,证明了一种可用于促进GWG实时监测和干预的新工具。我们的回归分析表明,孕前BMI对孕期体重变化具有较高的预测价值,这与已发布的体重增加指南一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9b7/5655493/184cc8dffd2a/pone.0186761.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验