Suppr超能文献

谷氨酸与离子型谷氨酸受体结合的能量学。

Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.

机构信息

Program in Molecular Biophysics, Johns Hopkins University , Baltimore, Maryland 21218, United States.

Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.

出版信息

J Phys Chem B. 2017 Nov 22;121(46):10436-10442. doi: 10.1021/acs.jpcb.7b06862. Epub 2017 Nov 9.

Abstract

Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are responsible for the majority of excitatory transmission at the synaptic cleft. Mechanically speaking, agonist binding to the ligand binding domain (LBD) activates the receptor by triggering a conformational change that is transmitted to the transmembrane region, opening the ion channel pore. We use fully atomistic molecular dynamics simulations to investigate the binding process in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, an iGluR subtype. The string method with swarms of trajectories was applied to calculate the possible pathways glutamate traverses during ligand binding. Residues peripheral to the binding cleft are found to metastably bind the ligand prior to ligand entry into the binding pocket. Umbrella sampling simulations were performed to compute the free energy barriers along the binding pathways. The calculated free energy profiles demonstrate that metastable interactions contribute substantially to the energetics of ligand binding and form local minima in the overall free energy landscape. Protein-ligand interactions at sites outside of the orthosteric agonist-binding site may serve to lower the transition barriers of the binding process.

摘要

离子型谷氨酸受体(iGluRs)是配体门控离子通道,负责突触间隙中大多数兴奋性传递。从力学上讲,激动剂与配体结合域(LBD)的结合通过触发构象变化来激活受体,该构象变化传递到跨膜区域,打开离子通道孔。我们使用全原子分子动力学模拟来研究α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体,一种 iGluR 亚型的结合过程。使用轨迹群的字符串方法来计算配体结合过程中谷氨酸可能经历的途径。发现结合裂缝周围的残基在配体进入结合口袋之前,以亚稳态结合配体。进行了伞状采样模拟,以计算结合途径上的自由能势垒。计算得到的自由能曲线表明,亚稳态相互作用对配体结合的能量有很大贡献,并在整体自由能景观中形成局部最小值。位于正位激动剂结合位点之外的蛋白质-配体相互作用可能有助于降低结合过程的跃迁势垒。

相似文献

1
Energetics of Glutamate Binding to an Ionotropic Glutamate Receptor.
J Phys Chem B. 2017 Nov 22;121(46):10436-10442. doi: 10.1021/acs.jpcb.7b06862. Epub 2017 Nov 9.
2
Neurotransmitter Funneling Optimizes Glutamate Receptor Kinetics.
Neuron. 2018 Jan 3;97(1):139-149.e4. doi: 10.1016/j.neuron.2017.11.024. Epub 2017 Dec 14.
3
Gating Motions and Stationary Gating Properties of Ionotropic Glutamate Receptors: Computation Meets Electrophysiology.
Acc Chem Res. 2017 Apr 18;50(4):814-822. doi: 10.1021/acs.accounts.6b00598. Epub 2017 Feb 10.
4
Enhanced sampling of glutamate receptor ligand-binding domains.
Neurosci Lett. 2019 May 1;700:17-21. doi: 10.1016/j.neulet.2018.04.018. Epub 2018 Apr 14.
5
Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2.
J Phys Chem B. 2014 Feb 20;118(7):1813-24. doi: 10.1021/jp412195m. Epub 2014 Feb 10.
6
Full and partial agonism of ionotropic glutamate receptors indicated by molecular dynamics simulations.
J Chem Inf Model. 2011 May 23;51(5):1037-47. doi: 10.1021/ci2000055. Epub 2011 May 2.
7
Constitutive activity of ionotropic glutamate receptors via hydrophobic substitutions in the ligand-binding domain.
Structure. 2024 Jul 11;32(7):966-978.e6. doi: 10.1016/j.str.2024.04.001. Epub 2024 Apr 26.
8
Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors.
J Phys Chem B. 2015 Aug 27;119(34):10934-40. doi: 10.1021/acs.jpcb.5b00521. Epub 2015 Apr 1.
9
Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain.
Proteins. 2016 Feb;84(2):267-77. doi: 10.1002/prot.24977. Epub 2016 Jan 7.
10
Glycine agonism in ionotropic glutamate receptors.
Neuropharmacology. 2021 Aug 1;193:108631. doi: 10.1016/j.neuropharm.2021.108631. Epub 2021 May 28.

引用本文的文献

1
The molecular mechanisms of visual chromophore release from cellular retinaldehyde-binding protein.
Structure. 2025 Aug 7;33(8):1436-1445.e2. doi: 10.1016/j.str.2025.04.018. Epub 2025 May 21.
2
A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2411816122. doi: 10.1073/pnas.2411816122. Epub 2024 Dec 30.
3
Computational Investigation of BMAA and Its Carbamate Adducts as Potential GluR2 Modulators.
J Chem Inf Model. 2024 Jul 8;64(13):5140-5150. doi: 10.1021/acs.jcim.3c01195. Epub 2024 Jun 18.
4
Phosphorylation at Ser65 modulates ubiquitin conformational dynamics.
Structure. 2023 Jul 6;31(7):884-890.e2. doi: 10.1016/j.str.2023.05.006. Epub 2023 Jun 1.
5
Sustained-release behavior and the antitumor effect of charge-convertible poly(amino acid)s drug-loaded nanoparticles.
Drug Deliv Transl Res. 2023 Sep;13(9):2394-2406. doi: 10.1007/s13346-023-01323-w. Epub 2023 Mar 13.
6
Determination of Multidirectional Pathways for Ligand Release from the Receptor: A New Approach Based on Differential Evolution.
J Chem Theory Comput. 2022 Jun 14;18(6):3860-3872. doi: 10.1021/acs.jctc.1c01158. Epub 2022 May 5.
7
Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels.
Pharmacol Rev. 2021 Oct;73(4):298-487. doi: 10.1124/pharmrev.120.000131.
8
A multiscale coarse-grained model of the SARS-CoV-2 virion.
Biophys J. 2021 Mar 16;120(6):1097-1104. doi: 10.1016/j.bpj.2020.10.048. Epub 2020 Nov 28.
9
Atomic-scale characterization of mature HIV-1 capsid stabilization by inositol hexakisphosphate (IP).
Sci Adv. 2020 Sep 16;6(38). doi: 10.1126/sciadv.abc6465. Print 2020 Sep.
10
Druggability Simulations and X-Ray Crystallography Reveal a Ligand-Binding Site in the GluA3 AMPA Receptor N-Terminal Domain.
Structure. 2019 Feb 5;27(2):241-252.e3. doi: 10.1016/j.str.2018.10.017. Epub 2018 Dec 6.

本文引用的文献

1
String method solution of the gating pathways for a pentameric ligand-gated ion channel.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4158-E4167. doi: 10.1073/pnas.1617567114. Epub 2017 May 9.
2
Semiclosed Conformations of the Ligand-Binding Domains of NMDA Receptors during Stationary Gating.
Biophys J. 2016 Oct 4;111(7):1418-1428. doi: 10.1016/j.bpj.2016.08.010.
3
Transition path theory analysis of c-Src kinase activation.
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9193-8. doi: 10.1073/pnas.1602790113. Epub 2016 Aug 1.
4
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
5
A conformational transition in the myosin VI converter contributes to the variable step size.
Biophys J. 2011 Nov 16;101(10):2436-44. doi: 10.1016/j.bpj.2011.09.044. Epub 2011 Nov 15.
6
Pathway and mechanism of drug binding to G-protein-coupled receptors.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13118-23. doi: 10.1073/pnas.1104614108. Epub 2011 Jul 21.
7
How does a drug molecule find its target binding site?
J Am Chem Soc. 2011 Jun 22;133(24):9181-3. doi: 10.1021/ja202726y. Epub 2011 May 13.
8
Alchemical free energy methods for drug discovery: progress and challenges.
Curr Opin Struct Biol. 2011 Apr;21(2):150-60. doi: 10.1016/j.sbi.2011.01.011. Epub 2011 Feb 23.
9
Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation.
Curr Opin Neurobiol. 2011 Apr;21(2):283-90. doi: 10.1016/j.conb.2011.02.001. Epub 2011 Feb 23.
10
The hidden energetics of ligand binding and activation in a glutamate receptor.
Nat Struct Mol Biol. 2011 Mar;18(3):283-7. doi: 10.1038/nsmb.2010. Epub 2011 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验