Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, 10115 Berlin, Germany.
Neuron. 2018 Jan 3;97(1):139-149.e4. doi: 10.1016/j.neuron.2017.11.024. Epub 2017 Dec 14.
Ionotropic glutamate receptors (iGluRs) mediate neurotransmission at the majority of excitatory synapses in the brain. Little is known, however, about how glutamate reaches the recessed binding pocket in iGluR ligand-binding domains (LBDs). Here we report the process of glutamate binding to a prototypical iGluR, GluA2, in atomistic detail using unbiased molecular simulations. Charged residues on the LBD surface form pathways that facilitate glutamate binding by effectively reducing a three-dimensional diffusion process to a spatially constrained, two-dimensional one. Free energy calculations identify residues that metastably bind glutamate and help guide it into the binding pocket. These simulations also reveal that glutamate can bind in an inverted conformation and also reorient while in its pocket. Electrophysiological recordings demonstrate that eliminating these transient binding sites slows activation and deactivation, consistent with slower glutamate binding and unbinding. These results suggest that binding pathways have evolved to optimize rapid responses of AMPA-type iGluRs at synapses.
离子型谷氨酸受体 (iGluRs) 在大脑中大多数兴奋性突触处介导神经递质传递。然而,关于谷氨酸如何到达 iGluR 配体结合域 (LBD) 的凹陷结合口袋,人们知之甚少。在这里,我们使用无偏分子模拟详细报告了谷氨酸与典型的 iGluR,GluA2 结合的过程。LBD 表面上的带电残基形成了途径,通过有效地将三维扩散过程简化为空间受限的二维过程,促进谷氨酸的结合。自由能计算确定了亚稳定结合谷氨酸的残基,并有助于指导其进入结合口袋。这些模拟还表明,谷氨酸可以以倒置构象结合,并且在其口袋中也可以重新定向。电生理记录表明,消除这些瞬时结合位点会减慢激活和失活,这与谷氨酸结合和释放的速度较慢一致。这些结果表明,结合途径已经进化为了优化 AMPA 型 iGluR 在突触处的快速反应。