Suppr超能文献

用于多功能可穿戴应用的三维柔性全有机导体。

Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications.

机构信息

Development of Chemical and Biological Engineering, Korea University , Seongbuk-gu, Seoul 02855, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40580-40592. doi: 10.1021/acsami.7b10181. Epub 2017 Nov 7.

Abstract

Wearable textile electrodes based on π-conjugated polymers are appealing alternatives to carbon fabrics, conductive yarns, or metal wires because of their design flexibility, low cost, flexibility, and high throughput. This provides the benefits of both electronics and textiles. Herein, a general and new method has been developed to produce tailorable, wearable energy devices that are based on three-dimensional (3D) poly(3,4-ethylenedioxythiophene) (PEDOT)-coated textile conductors. To obtain the desired electrode materials, both facile solution-dropping polymerization methods are used to fabricate a 3D flexible PEDOT conductor on a cotton textile (PEDOT/textile). PEDOT/textile shows a very low sheet resistance of 4.6-4.9 Ω·sq. Here, we employ the example of this 3D network-like structure and the excellent electrical conductivities under the large deformation of PEDOT/textiles to show that wearable and portable heaters have immense potential. A flexible textile heater with a large area (8 × 7.8 cm) reached a saturation temperature of ∼83.9 °C when a bias of 7 V was applied for ∼70 s due to the good electrical conductivity of PEDOT. To demonstrate the performance of all-solid-state supercapacitors, nano-ascidian-like PEDOT (PEDOT-NA) arrays were prepared via a simple vapor-phase polymerization of 3,4-ethylenedioxythiophene on PEDOT/textile to increase both the surface area and the number of ion diffusion paths. The PEDOT-NA arrays on PEDOT/textile showed outstanding performance with an areal capacitance of 563.3 mF·cm at 0.4 mA·cm and extraordinary mechanical flexibility. The maximum volumetric power density and energy density of the nanostructured PEDOT on the textile were 1.75 W·cm and 0.0812 Wh·cm, respectively. It is expected that the wearable nanostructured conducting polymers will have advantages when used as structures for smart textronics and energy conversion/storage.

摘要

基于π共轭聚合物的可穿戴纺织电极是碳纤维、导电纱线或金属线的理想替代品,因为它们具有设计灵活性、低成本、柔韧性和高产量。这结合了电子学和纺织品的优点。在此,开发了一种通用的新方法,以生产基于三维(3D)聚(3,4-乙撑二氧噻吩)(PEDOT)涂覆的纺织导体的可定制、可穿戴的能量器件。为了获得所需的电极材料,使用两种简便的溶液滴落聚合方法在棉纺织品(PEDOT/纺织品)上制造 3D 柔性 PEDOT 导体。PEDOT/纺织品的面电阻非常低,为 4.6-4.9 Ω·sq。在这里,我们以这种 3D 网状结构和 PEDOT/纺织品在大变形下的优异电导率为例,展示了可穿戴和便携式加热器具有巨大的潜力。由于 PEDOT 的良好导电性,当在 7 V 的偏压下施加约 70 s 时,面积为 8×7.8 cm 的柔性纺织品加热器达到约 83.9°C 的饱和温度。为了展示全固态超级电容器的性能,通过在 PEDOT/纺织品上简单的气相聚合 3,4-乙撑二氧噻吩制备了纳米海胆状 PEDOT(PEDOT-NA)阵列,以增加表面积和离子扩散路径的数量。PEDOT/纺织品上的 PEDOT-NA 阵列表现出出色的性能,在 0.4 mA·cm 时的面电容为 563.3 mF·cm,具有出色的机械柔韧性。纺织纳米结构 PEDOT 的最大体积功率密度和能量密度分别为 1.75 W·cm 和 0.0812 Wh·cm。预计可穿戴纳米结构导电聚合物在智能纺织品和能量转换/存储结构中具有优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验