Zheng Xianhong, Shen Jiakun, Hu Qiaole, Nie Wenqi, Wang Zongqian, Zou Lihua, Li Changlong
School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
Nanoscale. 2021 Jan 28;13(3):1832-1841. doi: 10.1039/d0nr07433k.
Multifunctional electronic textiles hold great potential applications in the wearable electronics field. However, it remains challenging to seamlessly integrate the multiple functions on the textile substrates without sacrificing their intrinsic properties. Herein, we report a novel and facile vapor phase polymerization (VPP) and spray-coating strategy towards the construction of a laminated film containing a PEDOT film and Ti3C2Tx MXene sheets on the fiber surface. The fabricated PEDOT/MXene decorated cotton fabrics are integrated with excellent electrochemical performance, joule heating performance, good electromagnetic interference (EMI) shielding, and strain sensing performance. The resultant multifunctional textiles have a low sheet resistance of 3.6 Ω sq-1, and the assembled all-solid-state fabric supercapacitors exhibit an ultrahigh specific capacitance of 1000.2 mF cm-2, which exceeds the state-of-the-art MXene-based fabric supercapacitors. In addition, the PEDOT/MXene modified fabrics exhibit an exceptional joule heating performance of 193.1 °C at the applied voltage of 12 V, high EMI shielding effectiveness of 36.62 dB, and high sensitivity as strain sensors for human motion detection. This work provides a novel strategy for the structure design of multifunctional textiles and will lay the foundation for the development of multifunctional wearable electronics.
多功能电子纺织品在可穿戴电子领域具有巨大的潜在应用。然而,在不牺牲其固有特性的情况下,将多种功能无缝集成到纺织基材上仍然具有挑战性。在此,我们报道了一种新颖且简便的气相聚合(VPP)和喷涂策略,用于在纤维表面构建包含聚(3,4-乙撑二氧噻吩)(PEDOT)薄膜和Ti3C2Tx MXene片层的层压膜。制备的PEDOT/MXene修饰棉织物具有优异的电化学性能、焦耳热性能、良好的电磁干扰(EMI)屏蔽性能和应变传感性能。所得多功能纺织品的薄层电阻低至3.6 Ω sq-1,组装的全固态织物超级电容器表现出1000.2 mF cm-2的超高比电容,超过了基于MXene的最先进织物超级电容器。此外,PEDOT/MXene修饰的织物在12 V施加电压下表现出193.1 °C的优异焦耳热性能、36.62 dB的高EMI屏蔽效能以及作为用于人体运动检测的应变传感器的高灵敏度。这项工作为多功能纺织品的结构设计提供了一种新颖策略,并将为多功能可穿戴电子设备的发展奠定基础。