Fan Junpeng, Menéndez Enric, Guerrero Miguel, Quintana Alberto, Weschke Eugen, Pellicer Eva, Sort Jordi
Departament de Física, UniversitatAutònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
Nanomaterials (Basel). 2017 Oct 25;7(11):348. doi: 10.3390/nano7110348.
The origin of magnetism in wide-gap semiconductors doped with non-ferromagnetic 3d transition metals still remains intriguing. In this article, insights in the magnetic properties of ordered mesoporous Cu-doped SnO₂ powders, prepared by hard-templating, have been unraveled. Whereas, both oxygen vacancies and Fe-based impurity phases could be a plausible explanation for the observed room temperature ferromagnetism, the low temperature magnetism is mainly and unambiguously arising from the nanoscale nature of the formed antiferromagnetic CuO, which results in a net magnetization that is reminiscent of ferromagnetic behavior. This is ascribed to uncompensated spins and shape-mediated spin canting effects. The reduced blocking temperature, which resides between 30 and 5 K, and traces of vertical shifts in the hysteresis loops confirm size effects in CuO. The mesoporous nature of the system with a large surface-to-volume ratio likely promotes the occurrence of uncompensated spins, spin canting, and spin frustration, offering new prospects in the use of magnetic semiconductors for energy-efficient spintronics.
掺杂非铁磁性3d过渡金属的宽禁带半导体中的磁性起源仍然很有趣。在本文中,通过硬模板法制备的有序介孔Cu掺杂SnO₂粉末的磁性特性已被揭示。虽然氧空位和铁基杂质相都可能是观察到的室温铁磁性的合理原因,但低温磁性主要且明确地源于形成的反铁磁性CuO的纳米尺度性质,这导致了类似于铁磁行为的净磁化强度。这归因于未补偿的自旋和形状介导的自旋倾斜效应。降低的阻塞温度介于30和5 K之间,以及磁滞回线中的垂直位移痕迹证实了CuO中的尺寸效应。具有大表面积与体积比的系统的介孔性质可能促进未补偿自旋、自旋倾斜和自旋受挫的发生,为将磁性半导体用于节能自旋电子学提供了新的前景。