Suppr超能文献

神经元电生理多样性的转录组学关联

Transcriptomic correlates of neuron electrophysiological diversity.

作者信息

Tripathy Shreejoy J, Toker Lilah, Li Brenna, Crichlow Cindy-Lee, Tebaykin Dmitry, Mancarci B Ogan, Pavlidis Paul

机构信息

Michael Smith Laboratories and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.

出版信息

PLoS Comput Biol. 2017 Oct 25;13(10):e1005814. doi: 10.1371/journal.pcbi.1005814. eCollection 2017 Oct.

Abstract

How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity.

摘要

神经元多样性如何从复杂的基因表达模式中产生,目前仍知之甚少。在此,我们提出一种方法,通过将汇集式和单细胞转录组学与细胞内电生理学相结合,从基因表达的角度来理解电生理多样性。利用神经信息学方法,我们从公开可用的资源中汇编了一个涵盖全脑的数据集,其中包含34种神经元类型及其配对的基因表达和内在电生理特征,这是迄今为止最大的此类数据集。我们鉴定出420个基因,其表达水平与11个生理参数中的一个或多个参数的变异性显著相关。接下来,我们训练统计模型,以便从多变量基因表达模式中推断细胞特征。这些模型能够预测来自艾伦脑科学研究所的12种视觉皮层细胞类型的独立数据集中的基因 - 电生理关系,这表明这些相关性可能反映了跨越非常不同细胞类型的表达模式与表型多样性之间的一般原则。本文报道的许多关联有可能为神经元如何产生功能多样性提供新的见解,并且离子通道基因如Gabrd和Scn1a(Nav1.1)与静息电位和放电频率的相关性与已知的因果机制一致。我们的工作凸显了利用细胞类型特异性转录组学来理解神经元多样性的机制起源所具有的前景和内在挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4a6/5673240/b3da554fd0e8/pcbi.1005814.g001.jpg

相似文献

1
Transcriptomic correlates of neuron electrophysiological diversity.
PLoS Comput Biol. 2017 Oct 25;13(10):e1005814. doi: 10.1371/journal.pcbi.1005814. eCollection 2017 Oct.
2
Transcriptomic correlates of electrophysiological and morphological diversity within and across excitatory and inhibitory neuron classes.
PLoS Comput Biol. 2019 Jun 18;15(6):e1007113. doi: 10.1371/journal.pcbi.1007113. eCollection 2019 Jun.
3
Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types.
J Neurophysiol. 2015 Jun 1;113(10):3474-89. doi: 10.1152/jn.00237.2015. Epub 2015 Mar 25.
4
Graded Coexpression of Ion Channel, Neurofilament, and Synaptic Genes in Fast-Spiking Vestibular Nucleus Neurons.
J Neurosci. 2020 Jan 15;40(3):496-508. doi: 10.1523/JNEUROSCI.1500-19.2019. Epub 2019 Nov 12.
5
Disentangling neural cell diversity using single-cell transcriptomics.
Nat Neurosci. 2016 Aug 26;19(9):1131-41. doi: 10.1038/nn.4366.
6
Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq.
Nat Biotechnol. 2016 Feb;34(2):199-203. doi: 10.1038/nbt.3445. Epub 2015 Dec 21.
7
Mechanism for neuronal spike generation by small and large ion channel clusters.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011903. doi: 10.1103/PhysRevE.70.011903. Epub 2004 Jul 7.
8
The contribution of ion channels in input-output plasticity.
Neurobiol Learn Mem. 2019 Dec;166:107095. doi: 10.1016/j.nlm.2019.107095. Epub 2019 Sep 17.
9
A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics.
J Neurophysiol. 1994 Jun;71(6):2338-58. doi: 10.1152/jn.1994.71.6.2338.
10
Classification of electrophysiological and morphological neuron types in the mouse visual cortex.
Nat Neurosci. 2019 Jul;22(7):1182-1195. doi: 10.1038/s41593-019-0417-0. Epub 2019 Jun 17.

引用本文的文献

2
A quantitative prediction method utilizing whole omics data for biosensing.
Sci Rep. 2025 Jan 27;15(1):1928. doi: 10.1038/s41598-024-84323-1.
4
Transcriptomic Correlates of State Modulation in GABAergic Interneurons: A Cross-Species Analysis.
J Neurosci. 2024 Oct 30;44(44):e2371232024. doi: 10.1523/JNEUROSCI.2371-23.2024.
5
A brief history of somatostatin interneuron taxonomy or: how many somatostatin subtypes are there, really?
Front Neural Circuits. 2024 Jul 17;18:1436915. doi: 10.3389/fncir.2024.1436915. eCollection 2024.
6
Loss of postnatal Arx transcriptional activity in parvalbumin interneurons reveals non-cell autonomous disturbances in CA1 pyramidal cells.
Neuroscience. 2024 Oct 18;558:128-150. doi: 10.1016/j.neuroscience.2024.05.020. Epub 2024 May 23.
7
Distinctive biophysical features of human cell-types: insights from studies of neurosurgically resected brain tissue.
Front Synaptic Neurosci. 2023 Oct 4;15:1250834. doi: 10.3389/fnsyn.2023.1250834. eCollection 2023.
8
Modeling functional cell types in spike train data.
PLoS Comput Biol. 2023 Oct 12;19(10):e1011509. doi: 10.1371/journal.pcbi.1011509. eCollection 2023 Oct.
9
Neurophysiological signatures of cortical micro-architecture.
Nat Commun. 2023 Sep 26;14(1):6000. doi: 10.1038/s41467-023-41689-6.
10
Intrinsic neural diversity quenches the dynamic volatility of neural networks.
Proc Natl Acad Sci U S A. 2023 Jul 11;120(28):e2218841120. doi: 10.1073/pnas.2218841120. Epub 2023 Jul 3.

本文引用的文献

1
Prevalence and architecture of de novo mutations in developmental disorders.
Nature. 2017 Feb 23;542(7642):433-438. doi: 10.1038/nature21062. Epub 2017 Jan 25.
2
Disentangling neural cell diversity using single-cell transcriptomics.
Nat Neurosci. 2016 Aug 26;19(9):1131-41. doi: 10.1038/nn.4366.
3
Physiological roles of Kv2 channels in entorhinal cortex layer II stellate cells revealed by Guangxitoxin-1E.
J Physiol. 2017 Feb 1;595(3):739-757. doi: 10.1113/JP273024. Epub 2016 Nov 13.
5
Cell adhesion molecule L1 contributes to neuronal excitability regulating the function of voltage-gated Na+ channels.
J Cell Sci. 2016 May 1;129(9):1878-91. doi: 10.1242/jcs.182089. Epub 2016 Mar 16.
6
Spatial Gene-Expression Gradients Underlie Prominent Heterogeneity of CA1 Pyramidal Neurons.
Neuron. 2016 Jan 20;89(2):351-68. doi: 10.1016/j.neuron.2015.12.013.
7
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.
Nat Neurosci. 2016 Feb;19(2):335-46. doi: 10.1038/nn.4216. Epub 2016 Jan 4.
8
Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes.
Nat Biotechnol. 2016 Feb;34(2):175-183. doi: 10.1038/nbt.3443. Epub 2015 Dec 21.
9
Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq.
Nat Biotechnol. 2016 Feb;34(2):199-203. doi: 10.1038/nbt.3445. Epub 2015 Dec 21.
10
Principles of connectivity among morphologically defined cell types in adult neocortex.
Science. 2015 Nov 27;350(6264):aac9462. doi: 10.1126/science.aac9462.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验