Tripathy Shreejoy J, Toker Lilah, Li Brenna, Crichlow Cindy-Lee, Tebaykin Dmitry, Mancarci B Ogan, Pavlidis Paul
Michael Smith Laboratories and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
PLoS Comput Biol. 2017 Oct 25;13(10):e1005814. doi: 10.1371/journal.pcbi.1005814. eCollection 2017 Oct.
How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity.
神经元多样性如何从复杂的基因表达模式中产生,目前仍知之甚少。在此,我们提出一种方法,通过将汇集式和单细胞转录组学与细胞内电生理学相结合,从基因表达的角度来理解电生理多样性。利用神经信息学方法,我们从公开可用的资源中汇编了一个涵盖全脑的数据集,其中包含34种神经元类型及其配对的基因表达和内在电生理特征,这是迄今为止最大的此类数据集。我们鉴定出420个基因,其表达水平与11个生理参数中的一个或多个参数的变异性显著相关。接下来,我们训练统计模型,以便从多变量基因表达模式中推断细胞特征。这些模型能够预测来自艾伦脑科学研究所的12种视觉皮层细胞类型的独立数据集中的基因 - 电生理关系,这表明这些相关性可能反映了跨越非常不同细胞类型的表达模式与表型多样性之间的一般原则。本文报道的许多关联有可能为神经元如何产生功能多样性提供新的见解,并且离子通道基因如Gabrd和Scn1a(Nav1.1)与静息电位和放电频率的相关性与已知的因果机制一致。我们的工作凸显了利用细胞类型特异性转录组学来理解神经元多样性的机制起源所具有的前景和内在挑战。