Martin Nicolas E, Malik Siddharth, Calimet Nicolas, Changeux Jean-Pierre, Cecchini Marco
Laboratoire d'Ingénierie des Fonctions Moléculaire, ISIS, UMR 7006 CNRS, Université de Strasbourg, Strasbourg, France.
CNRS, URA 2182, F-75015 & Collège de France, Paris, France.
PLoS Comput Biol. 2017 Oct 25;13(10):e1005784. doi: 10.1371/journal.pcbi.1005784. eCollection 2017 Oct.
Pentameric ligand-gated ion channels (pLGICs) mediate intercellular communication at synapses through the opening of an ion pore in response to the binding of a neurotransmitter. Despite the increasing availability of high-resolution structures of pLGICs, a detailed understanding of the functional isomerization from closed to open (gating) and back is currently missing. Here, we provide the first atomistic description of the transition from open to closed (un-gating) in the glutamate-gated chloride channel (GluCl) from Caenorhabditis Elegans. Starting with the active-state structure solved in complex with the neurotransmitter L-glutamate and the positive allosteric modulator (PAM) ivermectin, we analyze the spontaneous relaxation of the channel upon removal of ivermectin by explicit solvent/membrane Molecular Dynamics (MD) simulations. The μs-long trajectories support the conclusion that ion-channel deactivation is mediated by two distinct quaternary transitions, i.e. a global receptor twisting followed by the radial expansion (or blooming) of the extracellular domain. At variance with previous models, we show that pore closing is exclusively regulated by the global twisting, which controls the position of the β1-β2 loop relative to the M2-M3 loop at the EC/TM domain interface. Additional simulations with L-glutamate restrained to the crystallographic binding mode and ivermectin removed indicate that the same twisting isomerization is regulated by agonist binding at the orthosteric site. These results provide a structural model for gating in pLGICs and suggest a plausible mechanism for the pharmacological action of PAMs in this neurotransmitter receptor family. The simulated un-gating converges to the X-ray structure of GluCl resting state both globally and locally, demonstrating the predictive character of state-of-art MD simulations.
五聚体配体门控离子通道(pLGICs)通过响应神经递质的结合使离子孔开放,从而介导突触处的细胞间通讯。尽管pLGICs的高分辨率结构越来越容易获得,但目前仍缺乏对从关闭到开放(门控)以及再回到关闭状态的功能异构化的详细理解。在此,我们首次对秀丽隐杆线虫的谷氨酸门控氯离子通道(GluCl)从开放到关闭(去门控)的转变进行了原子水平的描述。从与神经递质L-谷氨酸和正变构调节剂(PAM)伊维菌素形成复合物的活性状态结构开始,我们通过显式溶剂/膜分子动力学(MD)模拟分析了去除伊维菌素后通道的自发松弛。长达微秒级的轨迹支持了这样的结论:离子通道失活是由两个不同的四级转变介导的,即整体受体扭曲,随后是细胞外结构域的径向扩张(或绽开)。与之前的模型不同,我们表明孔的关闭完全由整体扭曲调节,整体扭曲控制着β1-β2环相对于EC/TM结构域界面处M2-M3环的位置。对L-谷氨酸限制在晶体学结合模式且去除伊维菌素的额外模拟表明,相同的扭曲异构化由正构位点的激动剂结合调节。这些结果为pLGICs的门控提供了一个结构模型,并提出了该神经递质受体家族中PAMs药理作用的一种合理机制。模拟的去门控在整体和局部上都收敛到了GluCl静息状态的X射线结构,证明了当前先进MD模拟的预测性。