Department of Biochemistry, University of Oxford, Oxford, U.K.
Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, U.K.
J Phys Chem B. 2021 Feb 4;125(4):981-994. doi: 10.1021/acs.jpcb.0c09285. Epub 2021 Jan 13.
Ion channels are proteins which form gated nanopores in biological membranes. Many channels exhibit hydrophobic gating, whereby functional closure of a pore occurs by local dewetting. The pentameric ligand gated ion channels (pLGICs) provide a biologically important example of hydrophobic gating. Molecular simulation studies comparing additive vs polarizable models indicate predictions of hydrophobic gating are robust to the model employed. However, polarizable models suggest favorable interactions of hydrophobic pore-lining regions with chloride ions, of relevance to both synthetic carriers and channel proteins. Electrowetting of a closed pLGIC hydrophobic gate requires too high a voltage to occur physiologically but may inform designs for switchable nanopores. Global analysis of ∼200 channels yields a simple heuristic for structure-based prediction of (closed) hydrophobic gates. Simulation-based analysis is shown to provide an aid to interpretation of functional states of new channel structures. These studies indicate the importance of understanding the behavior of water and ions within the nanoconfined environment presented by ion channels.
离子通道是形成生物膜中门控纳米孔的蛋白质。许多通道表现出疏水性门控,即通过局部去湿来实现孔的功能关闭。五聚体配体门控离子通道(pLGICs)提供了疏水性门控的一个重要生物学例子。比较加和模型与极化模型的分子模拟研究表明,疏水性门控的预测对所采用的模型具有稳健性。然而,极化模型表明疏水孔道衬里区域与氯离子之间存在有利相互作用,这与合成载体和通道蛋白都有关。关闭的 pLGIC 疏水性门的电润湿需要过高的电压才能在生理上发生,但可能为可切换纳米孔的设计提供信息。对约 200 个通道的全局分析得出了一种基于结构的(关闭)疏水性门预测的简单启发式方法。模拟分析被证明有助于解释新通道结构的功能状态。这些研究表明,理解离子通道所呈现的纳米受限环境中水分子和离子的行为非常重要。