Suppr超能文献

1987年列文虎克讲座。迈向对链霉菌基因转换的理解,这是孢子形成和抗生素产生的基础。

The Leeuwenhoek lecture, 1987. Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production.

作者信息

Hopwood D A

机构信息

John Innes Institute, Norwich, U.K.

出版信息

Proc R Soc Lond B Biol Sci. 1988 Nov 22;235(1279):121-38. doi: 10.1098/rspb.1988.0067.

Abstract

Streptomycetes are soil bacteria that differ from the genetically well-known Escherichia coli in two striking characteristics. (1) Instead of consisting of an alternation of growth and fission of morphologically simple, undifferentiated rods, the streptomycete life cycle involves the formation of a system of elongated, branching hyphae which, after a period of vegetative growth, respond to specific signals by producing specialized spore-bearing structures. (2) The streptomycetes produce an unrivalled range of chemically diverse 'secondary metabolites', which we recognize as antibiotics, herbicides and pharmacologically active molecules, and which presumably play an important role in the streptomycete life cycle in nature. This 'physiological' differentiation is often temporally associated with the morphological differentiation of sporulation and there are common elements in the regulation of the two sets of processes. In the model system provided by Streptomyces coelicolor A3(2), the isolation of several whole clusters of linked antibiotic biosynthetic pathway genes, and some key regulatory genes involved in sporulation, has made it possible to study the basis for the switching on and off of particular sets of genes during morphological and 'physiological' differentiation. Genetic analysis clearly reveals a regulatory cascade operating at several levels in a 'physiological' branch of the differentiation control system. At the lowest level, within individual clusters of antibiotic biosynthesis genes are genes with a role as activators of the structural genes for the pathway enzymes, and also resistance genes. It is attractive to speculate that the latter play a dual role: protecting the organism from self-destruction by its own potentially lethal product, and forming an essential component of a regulatory circuit that activates the biosynthetic genes, thus ensuring that resistance is established before any antibiotic is made. A next higher level of regulation is revealed by the isolation of mutations in a gene (afsB) required for expression (probably at the level of transcription) of all five known secondary metabolic pathways in the organism. At a higher level still, the bldA gene, whose product seems to be a tRNA essential to translate the rare (in high [G + C] Streptomyces DNA) TTA leucine codon, controls or influences the whole gamut of morphological and 'physiological' differentiation, because bldA mutants fail to produce either secondary metabolites or aerial mycelium and spores, while growing normally in the vegetative phase.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

链霉菌是土壤细菌,在两个显著特征上与遗传学上广为人知的大肠杆菌不同。(1)链霉菌的生命周期并非由形态简单、未分化的杆菌的生长和分裂交替组成,而是涉及形成一个细长的分支菌丝系统,在一段营养生长时期后,该系统通过产生特殊的产孢结构对特定信号作出反应。(2)链霉菌产生了一系列无与伦比的化学性质多样的“次级代谢产物”,我们将其识别为抗生素、除草剂和药理活性分子,并且这些产物可能在自然界的链霉菌生命周期中发挥重要作用。这种“生理”分化通常在时间上与孢子形成的形态分化相关联,并且在这两组过程的调控中有共同的要素。在天蓝色链霉菌A3(2)提供的模型系统中,分离出了几个相连的抗生素生物合成途径基因的完整簇,以及一些参与孢子形成的关键调控基因,这使得研究在形态和“生理”分化过程中特定基因集的开启和关闭的基础成为可能。遗传分析清楚地揭示了在分化控制系统的“生理”分支中在几个层面上运作的调控级联。在最低层面,抗生素生物合成基因的各个簇内有作为途径酶结构基因激活剂的基因,还有抗性基因。推测后者发挥双重作用是很有吸引力的:保护生物体免受其自身潜在致命产物的自我毁灭,并形成激活生物合成基因的调控回路的重要组成部分,从而确保在产生任何抗生素之前建立抗性。通过分离出一个基因(afsB)中的突变揭示了更高一级的调控,该基因对于生物体中所有五个已知的次级代谢途径的表达(可能在转录水平)是必需的。再高一级,bldA基因控制或影响形态和“生理”分化的整个范围,其产物似乎是一种tRNA,对于翻译罕见的(在高[G + C]链霉菌DNA中)TTA亮氨酸密码子是必需的,因为bldA突变体在营养生长阶段正常生长的同时,既不产生次级代谢产物,也不产生气生菌丝和孢子。(摘要截短于250词)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验