Suppr超能文献

大肠杆菌尿嘧啶转运蛋白 UraA 的构象转变:分子模拟研究。

Conformational transitions of uracil transporter UraA from Escherichia coli: a molecular simulation study.

机构信息

a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130012 , People's Republic of China.

b The Fungal Reference Laboratory of Shanghai Dermatology Hospital , Shanghai 200050 , China.

出版信息

J Biomol Struct Dyn. 2018 Oct;36(13):3398-3410. doi: 10.1080/07391102.2017.1388288. Epub 2017 Oct 26.

Abstract

The Escherichia coli uracil/H + symporter UraA, known as the representative nucleobase/cation symporter 2(NCS2) protein, gets involved in several crucial physiological processes for most living organisms on Earth, such as the uptake of nucleobases and transport of vitamin C. Some experiments proposed a working model to explain proton-coupling and uracil transporting process of UraA on the basis of the crystal structure of NCS2 protein, but the details of conformational changes remained unknown. Thus, in order to make clear conformational changes caused by the protonation and deprotonation process of some conserved proton-coupled residues, the molecular dynamics simulation was used to study the conformation of UraA complexes in different protonation states. The results demonstrated that the protonation of residue Glu241 and Glu290 resulted in the whole conformational transition from the inward-open to the outward-open state. It can be concluded that Glu290 was crucial in a network of hydrogen-bonds in the middle of the core domain involving another essential residue, mainly including tyr288 in TM8, Tyr342, Ser338 in TM12, and the network of hydrogen-bonds was the key to maintain the stability of conformation. Protonation of Glu290 affects the stability of network of H-bond and changed the domains TM3 TM10 TM12. Thus, Glu290 may play a vital role as a 'proton trigger' that affects spatial structural of amino and residues near substrate binding side leading to an outward-open conformation transition.

摘要

大肠杆菌尿嘧啶/H + 协同转运蛋白 UraA,作为代表性的碱基/阳离子协同转运蛋白 2(NCS2)蛋白,参与了地球上大多数生物的几个关键生理过程,如碱基的摄取和维生素 C 的运输。一些实验提出了一个工作模型,基于 NCS2 蛋白的晶体结构来解释 UraA 的质子偶联和尿嘧啶转运过程,但构象变化的细节仍然未知。因此,为了阐明一些保守的质子偶联残基的质子化和去质子化过程所引起的构象变化,使用分子动力学模拟研究了不同质子化状态下 UraA 复合物的构象。结果表明,残基 Glu241 和 Glu290 的质子化导致整个构象从内向开放到外向开放的转变。可以得出结论,Glu290 是核心域中涉及另一个必需残基的氢键网络的关键,主要包括 TM8 中的 tyr288、TM12 中的 Tyr342 和 Ser338,氢键网络是维持构象稳定性的关键。Glu290 的质子化影响氢键网络的稳定性并改变 TM3-TM10-TM12 结构域。因此,Glu290 可能作为一个“质子触发”,影响底物结合侧附近的氨基酸和残基的空间结构,导致外向开放构象转变,从而发挥重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验