Suppr超能文献

易处理的RNA-配体相互作用动力学

Tractable RNA-ligand interaction kinetics.

作者信息

Kühnl Felix, Stadler Peter F, Will Sebastian

机构信息

Department of Computer Science and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstr. 16-18, Leipzig, D-04107, Germany.

MPI for Mathematics in the Sciences, Inselstr. 22, Leipzig, D-04103, Germany.

出版信息

BMC Bioinformatics. 2017 Oct 16;18(Suppl 12):424. doi: 10.1186/s12859-017-1823-5.

Abstract

BACKGROUND

The binding of small ligands to RNA elements can cause substantial changes in the RNA structure. This constitutes an important, fast-acting mechanism of ligand-controlled transcriptional and translational gene regulation implemented by a wide variety of riboswitches. The associated refolding processes often cannot be explained by thermodynamic effects alone. Instead, they are governed by the kinetics of RNA folding. While the computational analysis of RNA folding can make use of well-established models of the thermodynamics of RNA structures formation, RNA-RNA interaction, and RNA-ligand interaction, kinetic effects pose fundamentally more challenging problems due to the enormous size of the conformation space. The analysis of the combined process of ligand binding and structure formation even for small RNAs is plagued by intractably large state spaces. Moreover, the interaction is concentration-dependent and thus is intrinsically non-linear. This precludes the direct transfer of the strategies previously used for the analysis of RNA folding kinetics.

RESULTS

In our novel, computationally tractable approach to RNA-ligand kinetics, we overcome the two main difficulties by applying a gradient-based coarse graining to RNA-ligand systems and solving the process in a pseudo-first order approximation. The latter is well-justified for the most common case of ligand excess in RNA-ligand systems. We present the approach rigorously and discuss the parametrization of the model based on empirical data. The method supports the kinetic study of RNA-ligand systems, in particular at different ligand concentrations. As an example, we apply our approach to analyze the concentration dependence of the ligand response of the rationally designed, artificial theophylline riboswitch RS3.

CONCLUSION

This work demonstrates the tractability of the computational analysis of RNA-ligand interaction. Naturally, the model will profit as more accurate measurements of folding and binding parameters become available. Due to this work, computational analysis is available to support tasks like the design of riboswitches; our analysis of RS3 suggests strong co-transcriptional effects for this riboswitch. The method used in this study is available online, cf. Section "Availability of data and materials".

摘要

背景

小分子配体与RNA元件的结合可导致RNA结构发生显著变化。这构成了由多种核糖开关实现的配体控制转录和翻译基因调控的一种重要的快速作用机制。相关的重折叠过程通常不能仅用热力学效应来解释。相反,它们受RNA折叠动力学的支配。虽然RNA折叠的计算分析可以利用已确立的RNA结构形成、RNA-RNA相互作用和RNA-配体相互作用的热力学模型,但由于构象空间的巨大规模,动力学效应带来了本质上更具挑战性的问题。即使对于小RNA,配体结合和结构形成的联合过程分析也因难以处理的大状态空间而受到困扰。此外,这种相互作用是浓度依赖性的,因此本质上是非线性的。这排除了直接应用先前用于分析RNA折叠动力学的策略。

结果

在我们新颖的、计算上易于处理的RNA-配体动力学方法中,我们通过对RNA-配体系统应用基于梯度的粗粒化并在伪一级近似下求解该过程,克服了两个主要困难。对于RNA-配体系统中最常见的配体过量情况,后者是合理的。我们严格地展示了该方法,并基于经验数据讨论了模型的参数化。该方法支持RNA-配体系统的动力学研究,特别是在不同配体浓度下。作为一个例子,我们应用我们的方法来分析合理设计的人工茶碱核糖开关RS3的配体响应的浓度依赖性。

结论

这项工作证明了RNA-配体相互作用计算分析的可处理性。自然地,随着折叠和结合参数的更精确测量变得可用,该模型将从中受益。由于这项工作,计算分析可用于支持诸如核糖开关设计等任务;我们对RS3的分析表明该核糖开关具有强烈的共转录效应。本研究中使用的方法可在线获取,参见“数据和材料的可用性”部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37fa/5657077/d21dca019308/12859_2017_1823_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验