Suppr超能文献

BarMap:动态能量景观中的 RNA 折叠。

BarMap: RNA folding on dynamic energy landscapes.

机构信息

Institute for Theoretical Chemistry, University of Vienna, 1090 Wien, Austria.

出版信息

RNA. 2010 Jul;16(7):1308-16. doi: 10.1261/rna.2093310. Epub 2010 May 26.

Abstract

Dynamical changes of RNA secondary structures play an important role in the function of many regulatory RNAs. Such kinetic effects, especially in time-variable and externally triggered systems, are usually investigated by means of extensive and expensive simulations of large sets of individual folding trajectories. Here we describe the theoretical foundations of a generic approach that not only allows the direct computation of approximate population densities but also reduces the efforts required to analyze the folding energy landscapes to a one-time preprocessing step. The basic idea is to consider the kinetics on individual landscapes and to model external triggers and environmental changes as small but discrete changes in the landscapes. A "barmap" links macrostates of temporally adjacent landscapes and defines the transfer of population densities from one "snapshot" to the next. Implemented in the BarMap software, this approach makes it feasible to study folding processes at the level of basins, saddle points, and barriers for many nonstationary scenarios, including temperature changes, cotranscriptional folding, refolding in consequence to degradation, and mechanically constrained kinetics, as in the case of the translocation of a polymer through a pore.

摘要

RNA 二级结构的动态变化在许多调节 RNA 的功能中起着重要作用。这种动力学效应,特别是在时变和外部触发的系统中,通常通过对大量单个折叠轨迹进行广泛而昂贵的模拟来研究。在这里,我们描述了一种通用方法的理论基础,该方法不仅允许直接计算近似的种群密度,而且还可以将分析折叠能量景观所需的工作量减少到一次性预处理步骤。基本思想是考虑单个景观上的动力学,并将外部触发和环境变化建模为景观上的小但离散的变化。“barmap”将时间相邻景观的宏观状态联系起来,并定义了种群密度从一个“快照”到下一个“快照”的转移。该方法在 BarMap 软件中实现,使得在许多非稳态情况下,包括温度变化、共转录折叠、降解引起的重折叠以及聚合物通过孔的机械约束动力学(如易位),在盆地、鞍点和障碍的水平上研究折叠过程成为可能。

相似文献

1
BarMap: RNA folding on dynamic energy landscapes.
RNA. 2010 Jul;16(7):1308-16. doi: 10.1261/rna.2093310. Epub 2010 May 26.
2
Assessing the Quality of Cotranscriptional Folding Simulations.
Methods Mol Biol. 2024;2726:347-376. doi: 10.1007/978-1-0716-3519-3_14.
3
Energy landscapes, folding mechanisms, and kinetics of RNA tetraloop hairpins.
J Am Chem Soc. 2014 Dec 31;136(52):18052-61. doi: 10.1021/ja5100756. Epub 2014 Dec 17.
4
Landscape Zooming toward the Prediction of RNA Cotranscriptional Folding.
J Chem Theory Comput. 2022 Mar 8;18(3):2002-2015. doi: 10.1021/acs.jctc.1c01233. Epub 2022 Feb 8.
6
Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs.
Curr Opin Chem Biol. 2008 Dec;12(6):655-66. doi: 10.1016/j.cbpa.2008.09.017. Epub 2008 Oct 14.
7
Pseudoknots in RNA folding landscapes.
Bioinformatics. 2016 Jan 15;32(2):187-94. doi: 10.1093/bioinformatics/btv572. Epub 2015 Oct 1.
8
Efficient approximations of RNA kinetics landscape using non-redundant sampling.
Bioinformatics. 2017 Jul 15;33(14):i283-i292. doi: 10.1093/bioinformatics/btx269.
9
Simulating RNA folding kinetics on approximated energy landscapes.
J Mol Biol. 2008 Sep 12;381(4):1055-67. doi: 10.1016/j.jmb.2008.02.007. Epub 2008 Feb 13.
10
Folding kinetics of large RNAs.
J Mol Biol. 2008 May 23;379(1):160-73. doi: 10.1016/j.jmb.2008.02.064. Epub 2008 Mar 6.

引用本文的文献

1
A Guide to Computational Cotranscriptional Folding Featuring the SRP RNA.
Methods Mol Biol. 2024;2726:315-346. doi: 10.1007/978-1-0716-3519-3_13.
3
DrForna: visualization of cotranscriptional folding.
Bioinformatics. 2023 Sep 2;39(9). doi: 10.1093/bioinformatics/btad555.
4
DrTransformer: heuristic cotranscriptional RNA folding using the nearest neighbor energy model.
Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btad034.
5
Landscape Zooming toward the Prediction of RNA Cotranscriptional Folding.
J Chem Theory Comput. 2022 Mar 8;18(3):2002-2015. doi: 10.1021/acs.jctc.1c01233. Epub 2022 Feb 8.
7
Beyond Plug and Pray: Context Sensitivity and Design of Artificial Neomycin Riboswitches.
RNA Biol. 2021 Apr;18(4):457-467. doi: 10.1080/15476286.2020.1816336. Epub 2020 Oct 25.
8
Kinetic Mechanism of RNA Helix-Terminal Basepairing-A Kinetic Minima Network Analysis.
Biophys J. 2019 Nov 5;117(9):1674-1683. doi: 10.1016/j.bpj.2019.09.017. Epub 2019 Sep 20.
9
Predicting Cotranscriptional Folding Kinetics For Riboswitch.
J Phys Chem B. 2018 Aug 2;122(30):7484-7496. doi: 10.1021/acs.jpcb.8b04249. Epub 2018 Jul 19.
10
Effects of flanking regions on HDV cotranscriptional folding kinetics.
RNA. 2018 Sep;24(9):1229-1240. doi: 10.1261/rna.065961.118. Epub 2018 Jun 28.

本文引用的文献

1
Microbial thermosensors.
Cell Mol Life Sci. 2009 Aug;66(16):2661-76. doi: 10.1007/s00018-009-0041-3. Epub 2009 May 12.
2
Anomalous scaling in nanopore translocation of structured heteropolymers.
Phys Biol. 2009 May 1;6(3):036006. doi: 10.1088/1478-3975/6/3/036006.
3
Generation of synthetic RNA-based thermosensors.
Biol Chem. 2008 Oct;389(10):1319-26. doi: 10.1515/BC.2008.150.
4
Simulating RNA folding kinetics on approximated energy landscapes.
J Mol Biol. 2008 Sep 12;381(4):1055-67. doi: 10.1016/j.jmb.2008.02.007. Epub 2008 Feb 13.
5
Evolution of bacterial trp operons and their regulation.
Curr Opin Microbiol. 2008 Apr;11(2):78-86. doi: 10.1016/j.mib.2008.02.005.
6
Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins.
Biophys J. 2007 Jun 15;92(12):4188-95. doi: 10.1529/biophysj.106.102855. Epub 2007 Mar 23.
7
RNA antitoxins.
Curr Opin Microbiol. 2007 Apr;10(2):117-24. doi: 10.1016/j.mib.2007.03.003. Epub 2007 Mar 21.
8
Mechanism of DNA transport through pores.
Annu Rev Biophys Biomol Struct. 2007;36:435-50. doi: 10.1146/annurev.biophys.36.040306.132622.
9
Visualization of barrier tree sequences.
IEEE Trans Vis Comput Graph. 2006 Sep-Oct;12(5):781-8. doi: 10.1109/TVCG.2006.196.
10
RNA folding during transcription.
Annu Rev Biophys Biomol Struct. 2006;35:161-75. doi: 10.1146/annurev.biophys.35.040405.102053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验