State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology , Hubei, Wuhan 430070, China.
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology , Hubei, Wuhan 430070, China.
ACS Appl Mater Interfaces. 2017 Nov 15;9(45):39425-39431. doi: 10.1021/acsami.7b13529. Epub 2017 Nov 3.
One-dimensional heterostructures have attracted significant interests in various applications. However, the selective deposition of shell material on specific sites of the backbone material remains a challenge. Herein, a facile facet-selective deposition strategy has been developed for the construction of heterostructured α-MoO@FeO nanobelts. Because of the anisotropic feature of α-MoO nanobelts, the FeO nanoparticles selectively deposit on the edges of α-MoO nanobelts, that is, the {100} and {001} facets. Such a heterostructure facilitates the electron transfer in lithium storage. As a result, the α-MoO@FeO nanobelts exhibit high capacities of 913 mA h g after 100 cycles at 200 mA g and 540 mA h g after 100 cycles at 1000 mA g. The facet-selective deposition strategy developed here would be extended to the construction of other novel heterostructures with fascinating physical/chemical properties and wide potential applications.
一维异质结构在各种应用中引起了极大的兴趣。然而,在母体材料的特定部位选择性地沉积壳材料仍然是一个挑战。在此,开发了一种简便的面选择性沉积策略,用于构建异质结构的α-MoO@FeO 纳米带。由于α-MoO 纳米带的各向异性特征,FeO 纳米颗粒选择性地沉积在α-MoO 纳米带的边缘,即{100}和{001}面。这种异质结构有利于锂存储中的电子转移。结果,α-MoO@FeO 纳米带在 200 mA g 下循环 100 次后表现出 913 mA h g 的高容量,在 1000 mA g 下循环 100 次后表现出 540 mA h g 的高容量。这里开发的面选择性沉积策略将扩展到构建具有迷人物理/化学性质和广泛应用潜力的其他新型异质结构。