Bai Wangfeng, Zheng Peng, Wen Fei, Zhang Jingji, Chen Daqin, Zhai Jiwei, Ji Zhenguo
College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
Dalton Trans. 2017 Nov 14;46(44):15340-15353. doi: 10.1039/c7dt02846f.
The development of (BiNa)TiO-based solid solutions with both high depolarization temperature T and excellent piezoelectric and electromechanical properties for practical application is intractable because improved thermal stability is usually accompanied by a deterioration in piezoelectric and electromechanical performance. Herein, we report a 0-3 type 0.93(BiNa)TiO-0.07BaTiO : 30 mol%ZnO composite (BNT-7BT : 0.3ZnO), in which the ZnO nanoparticles exist in two forms, to resolve the abovementioned long-standing obstacle. In this composite, Zn ions fill the boundaries of BNT-7BT grains, and residual Zn ions diffuse into the BNT-7BT lattice, as confirmed by XRD, Raman spectroscopy, and microstructure analysis. The BNT-7BT composite ceramics with a 0-3 type connectivity exhibited enhanced frequency-dependent electromechanical properties, fatigue characteristics, and thermal stabilities. More importantly, low poling field-driven large piezoelectric properties were observed for the composite ceramics as compared to the case of the pure BNT-7BT solid solution. A mechanism related to the ZnO-driven phase transition from the rhombohedral to tetragonal phase and built-in electric field to partially compensate the depolarization field was proposed to explain the achieved outstanding piezoelectric performance. This is the first time that the thermal stability, electromechanical behavior, and low poling field-driven high piezoelectric performance of BNT-based ceramics have been simultaneously optimized. Thus, our study provides a referential methodology to achieve novel piezoceramics with excellent piezoelectricity by composite engineering and opens up a new development window for the utilization of conventional BNT-based and other lead-free ceramics in practical applications.
开发具有高去极化温度T以及优异压电和机电性能以用于实际应用的(BiNa)TiO基固溶体是很棘手的,因为热稳定性的提高通常伴随着压电和机电性能的恶化。在此,我们报道了一种0-3型0.93(BiNa)TiO-0.07BaTiO : 30 mol%ZnO复合材料(BNT-7BT : 0.3ZnO),其中ZnO纳米颗粒以两种形式存在,以解决上述长期存在的障碍。通过X射线衍射、拉曼光谱和微观结构分析证实,在这种复合材料中,Zn离子填充了BNT-7BT晶粒的边界,并且残余的Zn离子扩散到BNT-7BT晶格中。具有0-3型连通性的BNT-7BT复合陶瓷表现出增强的频率依赖性机电性能、疲劳特性和热稳定性。更重要的是,与纯BNT-7BT固溶体相比,该复合陶瓷在低极化场驱动下表现出大的压电性能。提出了一种与ZnO驱动的从菱方相到四方相的相变以及内置电场以部分补偿去极化场相关的机制,来解释所实现的优异压电性能。这是首次同时优化了BNT基陶瓷的热稳定性、机电行为和低极化场驱动的高压电性能。因此,我们的研究提供了一种通过复合工程实现具有优异压电性的新型压电陶瓷的参考方法,并为在实际应用中利用传统的BNT基及其他无铅陶瓷开辟了新的发展窗口。