Suppr超能文献

谷胱甘肽的哈达玛变换编辑及大分子抑制的γ-氨基丁酸

Hadamard editing of glutathione and macromolecule-suppressed GABA.

作者信息

Oeltzschner Georg, Chan Kimberly L, Saleh Muhammad G, Mikkelsen Mark, Puts Nicolaas A, Edden Richard A E

机构信息

The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.

F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.

出版信息

NMR Biomed. 2018 Jan;31(1). doi: 10.1002/nbm.3844. Epub 2017 Oct 26.

Abstract

The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the major antioxidant glutathione (GSH) are compounds of high importance for the function and integrity of the human brain. In this study, a method for simultaneous J-difference spectral-edited magnetic resonance spectroscopy (MRS) of GSH and GABA with suppression of macromolecular (MM) signals at 3 T is proposed. MM-suppressed Hadamard encoding and reconstruction of MEGA (Mescher-Garwood)-edited spectroscopy (HERMES) consists of four sub-experiments (TE = 80 ms), with 20-ms editing pulses applied at: (A) 4.56 and 1.9 ppm; (B) 4.56 and 1.5 ppm; (C) 1.9 ppm; and (D) 1.5 ppm. One Hadamard combination (A + B - C - D) yields GSH-edited spectra, and another (A - B + C - D) yields GABA-edited spectra, with symmetric suppression of the co-edited MM signal. MM-suppressed HERMES, conventional HERMES and separate Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) data were successfully acquired from a (33 mm) voxel in the parietal lobe in 10 healthy subjects. GSH- and GABA-edited MM-suppressed HERMES spectra were in close agreement with the respective MEGA-PRESS spectra. Mean GABA (and GSH) estimates were 1.10 ± 0.15 i.u. (0.59 ± 0.12 i.u.) for MM-suppressed HERMES, and 1.13 ± 0.09 i.u. (0.66 ± 0.09 i.u.) for MEGA-PRESS. Mean GABA (and GSH) differences between MM-suppressed HERMES and MEGA-PRESS were -0.03 ± 0.11 i.u. (-0.07 ± 0.11 i.u.). The mean signal-to-noise ratio (SNR) improvement of MM-suppressed HERMES over MEGA-PRESS was 1.45 ± 0.25 for GABA and 1.32 ± 0.24 for GSH. These results indicate that symmetric suppression of the MM signal can be accommodated into the Hadamard editing framework. Compared with sequential single-metabolite MEGA-PRESS experiments, MM-suppressed HERMES allows for simultaneous edited measurements of GSH and GABA without MM contamination in only half the scan time, and SNR is maintained.

摘要

主要抑制性神经递质γ-氨基丁酸(GABA)和主要抗氧化剂谷胱甘肽(GSH)是对人类大脑功能和完整性至关重要的化合物。在本研究中,提出了一种在3T磁场下同时对GSH和GABA进行J-差分光谱编辑磁共振波谱(MRS)并抑制大分子(MM)信号的方法。MM抑制的哈达玛编码和MEGA(Mescher-Garwood)编辑光谱(HERMES)的重建由四个子实验组成(TE = 80 ms),在以下频率施加20 ms的编辑脉冲:(A)4.56和1.9 ppm;(B)4.56和1.5 ppm;(C)1.9 ppm;(D)1.5 ppm。一种哈达玛组合(A + B - C - D)产生GSH编辑光谱,另一种(A - B + C - D)产生GABA编辑光谱,同时对共同编辑的MM信号进行对称抑制。在10名健康受试者的顶叶(33 mm)体素中成功采集了MM抑制的HERMES、传统HERMES和单独的Mescher-Garwood点分辨光谱(MEGA-PRESS)数据。GSH和GABA编辑的MM抑制HERMES光谱与各自的MEGA-PRESS光谱非常吻合。MM抑制HERMES的平均GABA(和GSH)估计值为1.10±0.15国际单位(0.59±0.12国际单位),MEGA-PRESS为1.13±0.09国际单位(0.66±0.09国际单位)。MM抑制HERMES与MEGA-PRESS之间的平均GABA(和GSH)差异为-0.03±0.11国际单位(-0.07±0.11国际单位)。MM抑制HERMES相对于MEGA-PRESS的平均信噪比(SNR)改善对于GABA为1.45±0.25,对于GSH为1.32±0.24。这些结果表明,MM信号的对称抑制可以纳入哈达玛编辑框架。与顺序单代谢物MEGA-PRESS实验相比,MM抑制的HERMES允许在仅一半的扫描时间内同时对GSH和GABA进行编辑测量,且无MM污染,同时保持了SNR。

相似文献

1
Hadamard editing of glutathione and macromolecule-suppressed GABA.
NMR Biomed. 2018 Jan;31(1). doi: 10.1002/nbm.3844. Epub 2017 Oct 26.
2
Simultaneous edited MRS of GABA and glutathione.
Neuroimage. 2016 Nov 15;142:576-582. doi: 10.1016/j.neuroimage.2016.07.056. Epub 2016 Aug 14.
4
Simultaneous edited MRS of GABA, glutathione, and ethanol.
NMR Biomed. 2020 Apr;33(4):e4227. doi: 10.1002/nbm.4227. Epub 2020 Jan 14.
5
Impact of acquisition and modeling parameters on the test-retest reproducibility of edited GABA.
NMR Biomed. 2024 Apr;37(4):e5076. doi: 10.1002/nbm.5076. Epub 2023 Dec 13.
6
Simultaneous editing of GABA and glutathione at 7T using semi-LASER localization.
Magn Reson Med. 2018 Aug;80(2):474-479. doi: 10.1002/mrm.27044. Epub 2017 Dec 28.
7
Glutamate measurements using edited MRS.
Magn Reson Med. 2024 Apr;91(4):1314-1322. doi: 10.1002/mrm.29929. Epub 2023 Dec 3.
8
Simultaneous editing of GABA and GSH with Hadamard-encoded MR spectroscopic imaging.
Magn Reson Med. 2019 Jul;82(1):21-32. doi: 10.1002/mrm.27702. Epub 2019 Feb 22.
9
Prospective frequency and motion correction for edited H magnetic resonance spectroscopy.
Neuroimage. 2021 Jun;233:117922. doi: 10.1016/j.neuroimage.2021.117922. Epub 2021 Mar 1.
10
Multi-vendor standardized sequence for edited magnetic resonance spectroscopy.
Neuroimage. 2019 Apr 1;189:425-431. doi: 10.1016/j.neuroimage.2019.01.056. Epub 2019 Jan 22.

引用本文的文献

1
Brain glutathione and GABA+ levels in autistic children.
Autism Res. 2024 Mar;17(3):512-528. doi: 10.1002/aur.3097. Epub 2024 Jan 26.
2
A comprehensive guide to MEGA-PRESS for GABA measurement.
Anal Biochem. 2023 May 15;669:115113. doi: 10.1016/j.ab.2023.115113. Epub 2023 Mar 21.
3
Severity of prematurity and age impact early postnatal development of GABA and glutamate systems.
Cereb Cortex. 2023 Jun 8;33(12):7386-7394. doi: 10.1093/cercor/bhad046.
4
Impact of gradient scheme and non-linear shimming on out-of-voxel echo artifacts in edited MRS.
NMR Biomed. 2023 Feb;36(2):e4839. doi: 10.1002/nbm.4839. Epub 2022 Oct 19.
5
Decreased Brain GABA Levels in Patients with Migraine Without Aura: An Exploratory Proton Magnetic Resonance Spectroscopy Study.
Neuroscience. 2022 Apr 15;488:10-19. doi: 10.1016/j.neuroscience.2022.02.010. Epub 2022 Feb 17.
6
Edited magnetic resonance spectroscopy in the neonatal brain.
Neuroradiology. 2022 Feb;64(2):217-232. doi: 10.1007/s00234-021-02821-9. Epub 2021 Oct 15.
7
Prediction learning in adults with autism and its molecular correlates.
Mol Autism. 2021 Oct 6;12(1):64. doi: 10.1186/s13229-021-00470-6.
8
GSH and GABA decreases in IDH1-mutated low-grade gliomas detected by HERMES spectral editing at 3 T in vivo.
Neurochem Int. 2020 Dec;141:104889. doi: 10.1016/j.neuint.2020.104889. Epub 2020 Oct 22.
9
Spectral editing in H magnetic resonance spectroscopy: Experts' consensus recommendations.
NMR Biomed. 2021 May;34(5):e4411. doi: 10.1002/nbm.4411. Epub 2020 Sep 18.
10
Motion correction in magnetic resonance spectroscopy.
Magn Reson Med. 2020 Nov;84(5):2312-2326. doi: 10.1002/mrm.28287. Epub 2020 Apr 17.

本文引用的文献

1
Dual-volume excitation and parallel reconstruction for J-difference-edited MR spectroscopy.
Magn Reson Med. 2017 Jan;77(1):16-22. doi: 10.1002/mrm.26536. Epub 2016 Nov 8.
2
Simultaneous edited MRS of GABA and glutathione.
Neuroimage. 2016 Nov 15;142:576-582. doi: 10.1016/j.neuroimage.2016.07.056. Epub 2016 Aug 14.
3
Prospective frequency correction for macromolecule-suppressed GABA editing at 3T.
J Magn Reson Imaging. 2016 Dec;44(6):1474-1482. doi: 10.1002/jmri.25304. Epub 2016 May 30.
4
HERMES: Hadamard encoding and reconstruction of MEGA-edited spectroscopy.
Magn Reson Med. 2016 Jul;76(1):11-9. doi: 10.1002/mrm.26233. Epub 2016 Apr 19.
5
Advanced processing and simulation of MRS data using the FID appliance (FID-A)-An open source, MATLAB-based toolkit.
Magn Reson Med. 2017 Jan;77(1):23-33. doi: 10.1002/mrm.26091. Epub 2015 Dec 30.
6
Parallel reconstruction in accelerated multivoxel MR spectroscopy.
Magn Reson Med. 2015 Sep;74(3):599-606. doi: 10.1002/mrm.25718. Epub 2015 Jun 17.
8
Gannet: A batch-processing tool for the quantitative analysis of gamma-aminobutyric acid–edited MR spectroscopy spectra.
J Magn Reson Imaging. 2014 Dec;40(6):1445-52. doi: 10.1002/jmri.24478. Epub 2013 Nov 13.
9
Spectral-editing measurements of GABA in the human brain with and without macromolecule suppression.
Magn Reson Med. 2015 Dec;74(6):1523-9. doi: 10.1002/mrm.25549. Epub 2014 Dec 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验