Ebbers Lena, Weber Maren, Nothwang Hans Gerd
Neurogenetics Group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany.
BMC Neurosci. 2017 Oct 26;18(1):75. doi: 10.1186/s12868-017-0393-9.
In the mammalian superior olivary complex (SOC), synaptic inhibition contributes to the processing of binaural sound cues important for sound localization. Previous analyses demonstrated a tonotopic gradient for postsynaptic proteins mediating inhibitory neurotransmission in the lateral superior olive (LSO), a major nucleus of the SOC. To probe, whether a presynaptic molecular gradient exists as well, we investigated immunoreactivity against the vesicular inhibitory amino acid transporter (VIAAT) in the mouse auditory brainstem.
Immunoreactivity against VIAAT revealed a gradient in the LSO and the superior paraolivary nucleus (SPN) of NMRI mice, with high expression in the lateral, low frequency processing limb and low expression in the medial, high frequency processing limb of both nuclei. This orientation is opposite to the previously reported gradient of glycine receptors in the LSO. Other nuclei of the SOC showed a uniform distribution of VIAAT-immunoreactivity. No gradient was observed for the glycine transporter GlyT2 and the neuronal protein NeuN. Formation of the VIAAT gradient was developmentally regulated and occurred around hearing-onset between postnatal days 8 and 16. Congenital deaf Claudin14 mice bred on an NMRI background showed a uniform VIAAT-immunoreactivity in the LSO, whereas cochlear ablation in NMRI mice after hearing-onset did not affect the gradient. Additional analysis of C57Bl6/J, 129/SvJ and CBA/J mice revealed a strain-specific formation of the gradient.
Our results identify an activity-regulated gradient of VIAAT in the SOC of NRMI mice. Its absence in other mouse strains adds a novel layer of strain-specific features in the auditory system, i.e. tonotopic organization of molecular gradients. This calls for caution when comparing data from different mouse strains frequently used in studies involving transgenic animals. The presence of strain-specific differences offers the possibility of genetic mapping to identify molecular factors involved in activity-dependent developmental processes in the auditory system. This would provide an important step forward concerning improved auditory rehabilitation in cases of congenital deafness.
在哺乳动物的上橄榄复合体(SOC)中,突触抑制有助于处理对声音定位很重要的双耳声音线索。先前的分析表明,在SOC的主要核团外侧上橄榄核(LSO)中,介导抑制性神经传递的突触后蛋白存在音调拓扑梯度。为了探究是否也存在突触前分子梯度,我们研究了小鼠听觉脑干中针对囊泡抑制性氨基酸转运体(VIAAT)的免疫反应性。
针对VIAAT的免疫反应性在NMRI小鼠的LSO和上橄榄旁核(SPN)中显示出梯度,在两个核团的外侧低频处理部分高表达,在内侧高频处理部分低表达。这种方向与先前报道的LSO中甘氨酸受体的梯度相反。SOC的其他核团显示VIAAT免疫反应性呈均匀分布。未观察到甘氨酸转运体GlyT2和神经元蛋白NeuN的梯度。VIAAT梯度的形成受发育调控,发生在出生后第8天至16天之间的听力开始时。在NMRI背景下培育的先天性耳聋Claudin-14小鼠在LSO中显示出均匀的VIAAT免疫反应性,而在听力开始后对NMRI小鼠进行耳蜗切除并不影响该梯度。对C57Bl6/J、129/SvJ和CBA/J小鼠的进一步分析揭示了该梯度的品系特异性形成。
我们的结果确定了NRMI小鼠SOC中VIAAT的活动调节梯度。它在其他小鼠品系中的缺失在听觉系统中增加了一层新的品系特异性特征,即分子梯度的音调拓扑组织。这在比较涉及转基因动物的研究中经常使用的不同小鼠品系的数据时需要谨慎。品系特异性差异的存在提供了基因定位的可能性,以识别参与听觉系统中活动依赖性发育过程的分子因素。这将是在先天性耳聋病例中改善听觉康复方面向前迈出的重要一步。