Guo Hui, Bueler Stephanie A, Rubinstein John L
Hospital for Sick Children Research Institute, Toronto, Ontario M5G 0A4, Canada.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
Science. 2017 Nov 17;358(6365):936-940. doi: 10.1126/science.aao4815. Epub 2017 Oct 26.
Mitochondrial adenosine triphosphate (ATP) synthase produces the majority of ATP in eukaryotic cells, and its dimerization is necessary to create the inner membrane folds, or cristae, characteristic of mitochondria. Proton translocation through the membrane-embedded F region turns the rotor that drives ATP synthesis in the soluble F region. Although crystal structures of the F region have illustrated how this rotation leads to ATP synthesis, understanding how proton translocation produces the rotation has been impeded by the lack of an experimental atomic model for the F region. Using cryo-electron microscopy, we determined the structure of the dimeric F complex from at a resolution of 3.6 angstroms. The structure clarifies how the protons travel through the complex, how the complex dimerizes, and how the dimers bend the membrane to produce cristae.
线粒体三磷酸腺苷(ATP)合酶在真核细胞中产生大部分ATP,其二聚化对于形成线粒体特有的内膜褶皱即嵴是必要的。质子通过嵌入膜的F区域的转运使驱动可溶性F区域中ATP合成的转子转动。尽管F区域的晶体结构已经阐明了这种转动如何导致ATP合成,但由于缺乏F区域的实验性原子模型,对质子转运如何产生转动的理解受到了阻碍。利用冷冻电子显微镜,我们以3.6埃的分辨率确定了来自[具体来源未给出]的二聚体F复合物的结构。该结构阐明了质子如何穿过复合物、复合物如何二聚化以及二聚体如何使膜弯曲以产生嵴。