From the Princess Margaret Cancer Centre and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
J Biol Chem. 2017 Dec 22;292(51):20947-20959. doi: 10.1074/jbc.M117.799700. Epub 2017 Oct 26.
UHRF1 is a key mediator of inheritance of epigenetic DNA methylation patterns during cell division and is a putative target for cancer therapy. Recent studies indicate that interdomain interactions critically influence UHRF1's chromatin-binding properties, including allosteric regulation of its histone binding. Here, using an integrative approach that combines small angle X-ray scattering, NMR spectroscopy, and molecular dynamics simulations, we characterized the dynamics of the tandem tudor domain-plant homeodomain (TTD-PHD) histone reader module, including its 20-residue interdomain linker. We found that the apo TTD-PHD module in solution comprises a dynamic ensemble of conformers, approximately half of which are compact conformations, with the linker lying in the TTD peptide-binding groove. These compact conformations are amenable to cooperative, high-affinity histone binding. In the remaining conformations, the linker position was in flux, and the reader adopted both extended and compact states. Using a small-molecule fragment screening approach, we identified a compound, 4-benzylpiperidine-1-carboximidamide, that binds to the TTD groove, competes with linker binding, and promotes open TTD-PHD conformations that are less efficient at H3K9me3 binding. Our work reveals a mechanism by which the dynamic TTD-PHD module can be allosterically targeted with small molecules to modulate its histone reader function for therapeutic or experimental purposes.
UHRF1 是细胞分裂过程中表观遗传 DNA 甲基化模式遗传的关键介质,也是癌症治疗的潜在靶点。最近的研究表明,结构域间相互作用对 UHRF1 的染色质结合特性具有重要影响,包括其组蛋白结合的变构调节。在这里,我们使用一种综合方法,结合小角度 X 射线散射、NMR 光谱和分子动力学模拟,对串联 tudor 结构域-植物同源结构域(TTD-PHD)组蛋白读取模块的动力学进行了表征,包括其 20 个残基的结构域间连接。我们发现,溶液中的 apo TTD-PHD 模块由一个动态构象的集合组成,其中大约一半是紧凑的构象,连接子位于 TTD 肽结合槽中。这些紧凑的构象有利于协同、高亲和力的组蛋白结合。在其余的构象中,连接子的位置是不稳定的,并且读取器采用了扩展和紧凑的状态。使用小分子片段筛选方法,我们鉴定出一种化合物,4-苄基哌啶-1-甲脒,它结合到 TTD 槽中,与连接子结合竞争,并促进开放的 TTD-PHD 构象,其与 H3K9me3 的结合效率较低。我们的工作揭示了一种机制,即通过小分子对动态 TTD-PHD 模块进行变构靶向,从而调节其组蛋白读取功能,用于治疗或实验目的。