Suppr超能文献

在具有行为变化的流感感染阶段流行病学模型中,宿主内部和宿主之间动态的联系。

Connecting within and between-hosts dynamics in the influenza infection-staged epidemiological models with behavior change.

作者信息

Pawelek Kasia A, Salmeron Cristian, Del Valle Sara

机构信息

Department of Mathematics and Computational Science, University of South Carolina Beaufort, Bluffton, SC 29909, USA.

出版信息

J Coupled Syst Multiscale Dyn. 2015 Sep;3(3):233-243. doi: 10.1166/jcsmd.2015.1082.

Abstract

Influenza viruses are a major public health problem worldwide. Although influenza has been extensively researched, there are still many aspects that are not fully understood such as the effects of within and between-hosts dynamics and their impact on behavior change. Here, we develop mathematical models with multiple infection stages and estimate parameters based on within-host data to investigate the impact of behavior change on influenza dynamics. We divide the infected population into three and four groups based on the age of the infection, which corresponds to viral load shedding. We consider within-host data on viral shedding to estimate the length and force of infection of the different infectivity stages. Our results show that behavior changes, due to exogenous events (e.g., media coverage) and disease symptoms, are effective in delaying and lowering an epidemic peak. We show that the dynamics of viral shedding and symptoms, during the infection, are key features when considering epidemic prevention strategies. This study improves our understanding of the spread of influenza virus infection in the population and provides information about the impact of emergent behavior and its connection to the within and between-hosts dynamics.

摘要

流感病毒是全球主要的公共卫生问题。尽管对流感已进行了广泛研究,但仍有许多方面尚未完全了解,例如宿主内部和宿主之间动态变化的影响及其对行为改变的作用。在此,我们开发了具有多个感染阶段的数学模型,并根据宿主内部数据估计参数,以研究行为改变对流感动态的影响。我们根据感染年龄将感染人群分为三组和四组,这与病毒载量的排出相对应。我们考虑宿主内部关于病毒排出的数据,以估计不同感染阶段的感染时长和感染强度。我们的结果表明,由于外部事件(如媒体报道)和疾病症状导致的行为改变,在延迟和降低疫情峰值方面是有效的。我们表明,在考虑防疫策略时,感染期间病毒排出和症状的动态变化是关键特征。这项研究增进了我们对流感病毒在人群中传播的理解,并提供了有关突发行为的影响及其与宿主内部和宿主之间动态变化联系的信息。

相似文献

本文引用的文献

1
Modeling the impact of twitter on influenza epidemics.模拟推特对流感流行的影响。
Math Biosci Eng. 2014 Dec;11(6):1337-56. doi: 10.3934/mbe.2014.11.1337.
4
Prospects for controlling future pandemics of influenza.流感大流行未来的防控前景。
Virus Res. 2011 Dec;162(1-2):39-46. doi: 10.1016/j.virusres.2011.09.024. Epub 2011 Sep 22.
8
The public's response to the 2009 H1N1 influenza pandemic.公众对2009年甲型H1N1流感大流行的反应。
N Engl J Med. 2010 Jun 3;362(22):e65. doi: 10.1056/NEJMp1005102. Epub 2010 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验