Suppr超能文献

同时形成人工 SEI 膜和 3D 主体,用于稳定的金属钠负极。

Simultaneous Formation of Artificial SEI Film and 3D Host for Stable Metallic Sodium Anodes.

机构信息

Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University , Beijing 100191, China.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 22;9(46):40265-40272. doi: 10.1021/acsami.7b12568. Epub 2017 Nov 9.

Abstract

Metallic sodium is a promising anode for sodium-based batteries, owing to its high theoretical capacity (1165 mAh g) and low potential (-2.714 V vs standard hydrogen electrode). However, the growth of sodium dendrites and the infinite volume change of metallic sodium during sodium striping/plating result in a low Coulombic efficiency and poor cycling stability, generating a safety hazard of sodium-based batteries. Here, an efficient approach was proposed to simultaneously generate an artificial SEI film and 3D host for metallic sodium based on a conversion reaction (CR) between sodium and MoS (4Na + MoS = 2NaS + Mo) at room temperature. In the resultant sodium-MoS hybrid after the conversion reaction (Na-MoS (CR)), the production NaS is homogeneously dispersed on the surface of metallic sodium, which can act as an artificial SEI film, efficiently preventing the growth of sodium dendrites; the residual MoS nanosheets can construct a 3D host to confine metallic sodium, accommodating largely the volume change of sodium. Consequently, the Na-MoS (CR) hybrid exhibits very low overpotential of 25 mV and a very long cycle stability more than 1000 cycles. This novel strategy is promising to promote the development of metal (lithium, sodium, zinc)-based electrodes.

摘要

金属钠作为一种很有前途的钠离子电池负极材料,具有高理论容量(1165 mAh g)和低的氧化还原电位(-2.714 V 相对于标准氢电极)。然而,在钠剥离/电镀过程中,金属钠不断生长的枝晶和无限的体积变化导致其库仑效率低、循环稳定性差,从而产生了钠离子电池的安全隐患。在这里,我们提出了一种有效的方法,即在室温下通过钠和 MoS(4Na + MoS = 2NaS + Mo)之间的转化反应(CR),同时为金属钠生成人工 SEI 膜和 3D 主体。在转化反应(Na-MoS(CR))后得到的钠-二硫化钼(Na-MoS(CR))复合材料中,生成的 NaS 均匀地分散在金属钠的表面,充当人工 SEI 膜,有效地阻止了钠枝晶的生长;残余的 MoS 纳米片可以构建一个 3D 主体来限制金属钠,从而适应其巨大的体积变化。因此,Na-MoS(CR)复合材料具有非常低的过电位(25 mV)和超过 1000 次循环的超长循环稳定性。这种新颖的策略有望促进金属(锂、钠、锌)基电极的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验