Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science & Engineering, Beihang University, Beijing, 100191, China.
Nanoscale. 2019 Jan 31;11(5):2194-2201. doi: 10.1039/c8nr08060g.
Fabricating an artificial solid electrolyte interphase (SEI) layer on a lithium metal surface has become an available strategy to prevent highly active lithium directly contacting the organic electrolyte, which could avoid the spontaneous formation of an inhomogeneous and unstable SEI film on the lithium surface. However, the poor Li-ion transport capability of the traditional SEI films greatly limited the application of the artificial SEI for lithium metal anodes. In this work, we proposed an artificial TiO2/lithium n-butoxide hybrid SEI layer with facilitated Li-ion transport ability to enhance the cycling stability of lithium metal anodes. The artificial SEI film is mainly composed of amorphous titanium dioxide and lithium n-butoxide (ROLi, R = C4H9) which were in situ formed on the lithium metal surface via the hydrolytic process of tetrabutyl titanate. The obtained SEI exhibited not only efficient mechanical strength but also facilitated Li-ion transport ability, ensuring the long cycling stability of the lithium metal anode. As a consequence, the symmetrical battery with a TiO2/ROLi-Li electrode showed outstanding electrochemical performance in terms of a low potential hysteresis of 50 mV and long cycling stability over 600 hours with a flat voltage plateau. Li-LiFePO4 full cells also show greatly improved electrochemical performance with a high capacity retention of ∼100% for 200 cycles and a high capacity of 140 mA h g-1 at 0.5C.
在锂金属表面制造人工固体电解质界面(SEI)层已成为一种可行的策略,可以防止高活性的锂直接与有机电解质接触,从而避免在锂表面形成不均匀和不稳定的 SEI 膜。然而,传统 SEI 膜的锂离子传输能力差,极大地限制了人工 SEI 在锂金属阳极中的应用。在这项工作中,我们提出了一种具有促进锂离子传输能力的人工 TiO2/锂正丁醚混合 SEI 层,以提高锂金属阳极的循环稳定性。人工 SEI 膜主要由非晶态二氧化钛和锂正丁醚(ROLi,R = C4H9)组成,它们通过四丁基钛酸酯的水解过程原位形成于锂金属表面。所得到的 SEI 不仅具有高效的机械强度,而且还具有促进锂离子传输的能力,从而确保了锂金属阳极的长循环稳定性。因此,具有 TiO2/ROLi-Li 电极的对称电池表现出出色的电化学性能,具有 50 mV 的低电位滞后和超过 600 小时的长循环稳定性,具有平坦的电压平台。Li-LiFePO4 全电池也表现出了大大改善的电化学性能,在 0.5C 下具有约 100%的高容量保持率和 140 mA h g-1 的高容量。