Suppr超能文献

系统截断能否通过周期性自由能模拟加速配体结合计算?

Can System Truncation Speed up Ligand-Binding Calculations with Periodic Free-Energy Simulations?

作者信息

Manzoni Francesco, Uranga Jon, Genheden Samuel, Ryde Ulf

机构信息

Department of Theoretical Chemistry, Lund University, Chemical Centre , P.O. Box 124, SE-221 00 Lund, Sweden.

出版信息

J Chem Inf Model. 2017 Nov 27;57(11):2865-2873. doi: 10.1021/acs.jcim.7b00324. Epub 2017 Nov 10.

Abstract

We have investigated whether alchemical free-energy perturbation calculations of relative binding energies can be sped up by simulating a truncated protein. Previous studies with spherical nonperiodic systems showed that the number of simulated atoms could be reduced by a factor of 26 without affecting the calculated binding free energies by more than 0.5 kJ/mol on average ( Genheden, S.; Ryde, U. J. Chem. Theory Comput. 2012 , 8 , 1449 ), leading to a 63-fold decrease in the time consumption. However, such simulations are rather slow, owing to the need of a large cutoff radius for the nonbonded interactions. Periodic simulations with the electrostatics treated by Ewald summation are much faster. Therefore, we have investigated if a similar speed-up can be obtained also for periodic simulations. Unfortunately, our results show that it is harder to truncate periodic systems and that the truncation errors are larger for these systems. In particular, residues need to be removed from the calculations, which means that atoms have to be restrained to avoid that they move in an unrealistic manner. The results strongly depend on the strength on this restraint. For the binding of seven ligands to dihydrofolate reductase and ten inhibitors of blood-clotting factor Xa, the best results are obtained with a small restraining force constant. However, the truncation errors were still significant (e.g., 1.5-2.9 kJ/mol at a truncation radius of 10 Å). Moreover, the gain in computer time was only modest. On the other hand, if the snapshots are truncated after the MD simulations, the truncation errors are small (below 0.9 kJ/mol even for a truncation radius of 10 Å). This indicates that postprocessing with a more accurate energy function (e.g., with quantum chemistry) on truncated snapshots may be a viable approach.

摘要

我们研究了通过模拟截短的蛋白质,能否加快炼金术相对结合能自由能微扰计算的速度。先前对球形非周期性系统的研究表明,模拟原子的数量可以减少26倍,而平均计算得到的结合自由能变化不超过0.5 kJ/mol(Genheden, S.; Ryde, U. J. Chem. Theory Comput. 2012, 8, 1449),这使得时间消耗减少了63倍。然而,由于非键相互作用需要较大的截断半径,此类模拟相当缓慢。采用埃瓦尔德求和处理静电的周期性模拟要快得多。因此,我们研究了周期性模拟是否也能获得类似的加速效果。不幸的是,我们的结果表明,截断周期性系统更困难,且这些系统的截断误差更大。特别是,计算中需要去除一些残基,这意味着必须对原子进行约束,以避免它们以不切实际的方式移动。结果强烈依赖于这种约束的强度。对于七种配体与二氢叶酸还原酶的结合以及十种凝血因子Xa抑制剂,采用较小的约束力常数可得到最佳结果。然而,截断误差仍然很大(例如,在截断半径为10 Å时为1.5 - 2.9 kJ/mol)。此外,计算机时间的增益也很有限。另一方面,如果在分子动力学模拟后对快照进行截断,截断误差很小(即使截断半径为10 Å,误差也低于0.9 kJ/mol)。这表明对截断的快照使用更精确的能量函数(例如量子化学方法)进行后处理可能是一种可行的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验