Suppr超能文献

功能磁共振成像中对非奖励预测误差质量和不可减少不确定性的策略适应。

Strategic adaptation to non-reward prediction error qualities and irreducible uncertainty in fMRI.

机构信息

Department of Psychology, University of Muenster, Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany.

Department of Psychology, University of Muenster, Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany; Department of Neurology, University Hospital Cologne, Cologne, Germany.

出版信息

Cortex. 2017 Dec;97:32-48. doi: 10.1016/j.cortex.2017.09.017. Epub 2017 Oct 3.

Abstract

Prediction errors are deemed necessary for the updating of internal models of the environment, prompting us to stop or assert current action plans and helping us to adapt to environmental features. The aim of the present study was twofold: First, we sought to determine the neural underpinnings of qualitatively different abstract prediction errors in a serial pattern detection task. Distinct frontoparietal components were found for sequential terminations (inferior frontal gyrus - IFG) and extensions (superior frontal sulcus, posterior cingulate cortex, and angular gyrus), respectively. These findings provide a novel approach of distinguishing non-reward prediction error signals with regard to behavioural consequences they entail. Second, we investigated predictive processing as a function of statistical context (irreducible uncertainty). We hypothesised that the prospective scope of model-based expectancies is adapted to the stability of respective contexts in that unstable environments call for more frequent comparisons of expectancies with sensory input, resulting in stepwise predictions. Changes in environmental stability were reflected in activation of the angular gyrus and IFG for the highly uncertain context at potential points of prediction violation (checkpoints). Notably, this effect was not due to local fluctuations in stimulus improbability (surprise). Although further behavioural support is needed, data point towards a context-dependent adaptation of predictive strategies. Conceivably, enhanced neural responses at sequential checkpoints could reflect stepwise rather than full-length prediction. This strategic adjustment presumably relies on the iterant evaluation of model information retrieved from working memory, as suggested by strengthened functional connectivity of the parahippocampal area during epochs of high uncertainty.

摘要

预测误差被认为是更新环境内部模型所必需的,促使我们停止或断言当前的行动计划,并帮助我们适应环境特征。本研究的目的有两个:首先,我们试图确定在序列模式检测任务中定性不同的抽象预测误差的神经基础。分别发现了序列终止(额下回 - IFG)和扩展(额上沟、后扣带皮层和角回)的不同额顶叶成分。这些发现为区分基于行为结果的非奖励预测误差信号提供了一种新方法。其次,我们研究了预测处理作为统计上下文(不可约不确定性)的函数。我们假设基于模型的期望的预期范围适应于各自上下文的稳定性,即不稳定的环境需要更频繁地将期望与感觉输入进行比较,从而导致逐步预测。环境稳定性的变化反映在角回和 IFG 的激活上,对于高度不确定的上下文,在潜在的预测违反点(检查点)处。值得注意的是,这种效应不是由于刺激可能性的局部波动(惊喜)引起的。尽管需要进一步的行为支持,但数据表明预测策略存在上下文依赖性的适应。可以想象,在序列检查点处增强的神经反应可能反映了逐步预测,而不是全长预测。这种策略调整大概依赖于从工作记忆中迭代评估模型信息,正如在高不确定性时期增强的海马旁区域的功能连接所表明的那样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验