Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
Curr Opin Chem Biol. 2017 Dec;41:36-42. doi: 10.1016/j.cbpa.2017.10.001. Epub 2017 Nov 2.
The central dogma of gene expression entails the flow of genetic information from DNA to RNA, then to protein. Decades of studies on epigenetics have characterized an additional layer of information, where epigenetic states help to shape differential utilization of genetic information. Orchestrating conditional gene expressions to elicit a defined phenotype and function, epigenetics states distinguish different cell types or maintain a long-lived memory of past signals. Packaging the genetic information in the nucleus of the eukaryotic cell, chromatin provides a large regulatory repertoire that capacitates the genome to give rise to many distinct epigenomes. We will discuss how reversible, heritable functional annotation mechanisms in chromatin may have evolved from basic chemical diversification of the underlying molecules.
基因表达的中心法则涉及遗传信息从 DNA 到 RNA,再到蛋白质的流动。几十年来,对表观遗传学的研究已经确定了遗传信息的另一个层面,其中表观遗传状态有助于塑造遗传信息的差异利用。通过协调条件基因表达来引发特定的表型和功能,表观遗传状态区分不同的细胞类型或维持对过去信号的长期记忆。染色质将遗传信息包装在真核细胞的核内,提供了一个庞大的调控谱,使基因组能够产生许多不同的表观基因组。我们将讨论染色质中可逆的、可遗传的功能注释机制如何可能从基础分子的基本化学多样化中进化而来。