Blood Cell Research Group, Section for Research, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
BMC Immunol. 2017 Oct 27;18(1):46. doi: 10.1186/s12865-017-0229-5.
Biological interpretation of DNA microarray data may differ depending on underlying assumptions and statistical tests of bioinformatics tools used. We used Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) to analyze previously generated DNA microarray data from human monocytes stimulated with N. meningitidis and IL-10 ("the model system"), and with meningococcal sepsis plasma before and after immunodepletion of IL-10 ("the patient plasma system"). The objectives were to compare if the two bioinformatics methods resulted in similar biological interpretation of the datasets, and to identify whether GSEA provided additional insight compared with IPA about the monocyte host response to meningococcal activation.
In both experimental models, GSEA and IPA identified genes associated with pro-inflammatory innate immune activation, including TNF-signaling, Toll-like receptor signaling, JAK-STAT-signaling, and type I and type II interferon signaling. GSEA identified genes regulated by the presence of IL-10 with similar gene sets in both the model system and the patient plasma system. In the model system, GSEA and IPA in sum identified 170 genes associated with oxidative phosphorylation/mitochondrial function to be down-regulated in monocytes stimulated with meningococci. In the patient plasma system, GSEA and IPA in sum identified 122 genes associated with oxidative phosphorylation/mitochondrial dysfunction to be down-regulated by meningococcal sepsis plasma depleted for IL-10. Using IPA, we identified IL-10 to up-regulate 18 genes associated with oxidative phosphorylation/mitochondrial function that were down-regulated by N. meningitidis.
Biological processes associated with the gene expression changes in the model system of meningococcal sepsis were comparable with the results found in the patient plasma system. By combining GSEA with IPA, we discovered an inhibitory effect of N. meningitidis on genes associated with mitochondrial function and oxidative phosphorylation, and that IL-10 partially reverses this strong inhibitory effect, thereby identifying, to our knowledge, yet another group of genes where IL-10 regulates the effect of LPS. We suggest that relying on a single bioinformatics tool together with an arbitrarily chosen filtering criteria for data analysis may result in overlooking relevant biological processes and signaling pathways associated with genes differentially expressed between compared experimental conditions.
DNA 微阵列数据的生物学解释可能因所使用的生物信息学工具的基本假设和统计检验而有所不同。我们使用基因集富集分析(GSEA)和 Ingenuity 通路分析(IPA)来分析先前从用脑膜炎奈瑟菌和 IL-10 刺激的人单核细胞中产生的 DNA 微阵列数据(“模型系统”),以及用脑膜炎球菌败血症血浆在免疫耗竭 IL-10 前后(“患者血浆系统”)。目的是比较两种生物信息学方法是否对数据集的生物学解释产生相似的结果,并确定 GSEA 是否相对于 IPA 提供了关于脑膜炎球菌激活对单核细胞宿主反应的更多见解。
在两个实验模型中,GSEA 和 IPA 都鉴定了与促炎先天免疫激活相关的基因,包括 TNF 信号转导、Toll 样受体信号转导、JAK-STAT 信号转导以及 I 型和 II 型干扰素信号转导。GSEA 在模型系统和患者血浆系统中均鉴定了与 IL-10 存在相关的受调控基因。在模型系统中,GSEA 和 IPA 总共鉴定了 170 个与氧化磷酸化/线粒体功能相关的基因,这些基因在脑膜炎球菌刺激的单核细胞中下调。在患者血浆系统中,GSEA 和 IPA 总共鉴定了 122 个与氧化磷酸化/线粒体功能障碍相关的基因,这些基因在脑膜炎球菌败血症血浆耗尽 IL-10 后下调。使用 IPA,我们鉴定出 IL-10 上调了 18 个与氧化磷酸化/线粒体功能相关的基因,这些基因在脑膜炎奈瑟菌的下调。
与脑膜炎球菌败血症模型系统中基因表达变化相关的生物学过程与在患者血浆系统中发现的结果相当。通过将 GSEA 与 IPA 相结合,我们发现脑膜炎奈瑟菌对与线粒体功能和氧化磷酸化相关的基因具有抑制作用,而 IL-10 部分逆转了这种强烈的抑制作用,从而确定了,据我们所知,IL-10 调节 LPS 作用的另一组基因。我们建议,仅依靠单一的生物信息学工具和数据分析的任意选择过滤标准可能会导致忽略与比较实验条件下差异表达基因相关的相关生物学过程和信号通路。