Suppr超能文献

UClncR:从 RNA-seq 中进行超快速和全面的长非编码 RNA 检测。

UClncR: Ultrafast and comprehensive long non-coding RNA detection from RNA-seq.

机构信息

Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA.

Department of Health Sciences Research & Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA.

出版信息

Sci Rep. 2017 Oct 27;7(1):14196. doi: 10.1038/s41598-017-14595-3.

Abstract

Long non-coding RNA (lncRNA) is a large class of gene transcripts with regulatory functions discovered in recent years. Many more are expected to be revealed with accumulation of RNA-seq data from diverse types of normal and diseased tissues. However, discovering novel lncRNAs and accurately quantifying known lncRNAs is not trivial from massive RNA-seq data. Herein we describe UClncR, an Ultrafast and Comprehensive lncRNA detection pipeline to tackle the challenge. UClncR takes standard RNA-seq alignment file, performs transcript assembly, predicts lncRNA candidates, quantifies and annotates both known and novel lncRNA candidates, and generates a convenient report for downstream analysis. The pipeline accommodates both un-stranded and stranded RNA-seq so that lncRNAs overlapping with other genes can be predicted and quantified. UClncR is fully parallelized in a cluster environment yet allows users to run samples sequentially without a cluster. The pipeline can process a typical RNA-seq sample in a matter of minutes and complete hundreds of samples in a matter of hours. Analysis of predicted lncRNAs from two test datasets demonstrated UClncR's accuracy and their relevance to sample clinical phenotypes. UClncR would facilitate researchers' novel lncRNA discovery significantly and is publically available at http://bioinformaticstools.mayo.edu/research/UClncR .

摘要

长非编码 RNA(lncRNA)是近年来发现的具有调控功能的一类大型基因转录本。随着来自不同类型正常和患病组织的 RNA-seq 数据的积累,预计会有更多的 lncRNA 被揭示。然而,从大量的 RNA-seq 数据中发现新的 lncRNA 并准确量化已知的 lncRNA 并非易事。在此,我们描述了 UClncR,这是一种用于应对这一挑战的超快速和全面的 lncRNA 检测流程。UClncR 采用标准的 RNA-seq 比对文件,进行转录本组装,预测 lncRNA 候选物,对已知和新的 lncRNA 候选物进行定量和注释,并生成便于下游分析的报告。该流程同时适用于无链和有链 RNA-seq,以便预测和定量与其他基因重叠的 lncRNA。UClncR 在集群环境中完全并行化,但允许用户在没有集群的情况下顺序运行样本。该流程可以在几分钟内处理一个典型的 RNA-seq 样本,并在数小时内完成数百个样本的处理。对来自两个测试数据集的预测 lncRNA 的分析表明,UClncR 具有准确性,并且与样本的临床表型相关。UClncR 将极大地促进研究人员对新的 lncRNA 的发现,并在 http://bioinformaticstools.mayo.edu/research/UClncR 上公开提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b54f/5660178/d59cb7f5e4be/41598_2017_14595_Fig1_HTML.jpg

相似文献

1
UClncR: Ultrafast and comprehensive long non-coding RNA detection from RNA-seq.
Sci Rep. 2017 Oct 27;7(1):14196. doi: 10.1038/s41598-017-14595-3.
3
Prediction of novel long non-coding RNAs based on RNA-Seq data of mouse Klf1 knockout study.
BMC Bioinformatics. 2012 Dec 13;13:331. doi: 10.1186/1471-2105-13-331.
8
Preliminary RNA-Seq Analysis of Long Non-Coding RNAs Expressed in Human Term Placenta.
Int J Mol Sci. 2018 Jun 27;19(7):1894. doi: 10.3390/ijms19071894.
9
Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples.
Gigascience. 2019 Dec 1;8(12). doi: 10.1093/gigascience/giz145.
10
Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs.
Genome Biol. 2016 Feb 2;17:19. doi: 10.1186/s13059-016-0880-9.

引用本文的文献

2
Comprehensive Transcriptome Analysis Expands lncRNA Functional Profiles in Breast Cancer.
Int J Mol Sci. 2024 Aug 2;25(15):8456. doi: 10.3390/ijms25158456.
3
A bioinformatic-assisted workflow for genome-wide identification of ncRNAs.
NAR Genom Bioinform. 2022 Aug 15;4(3):lqac059. doi: 10.1093/nargab/lqac059. eCollection 2022 Sep.
4
Omics technologies in allergy and asthma research: An EAACI position paper.
Allergy. 2022 Oct;77(10):2888-2908. doi: 10.1111/all.15412. Epub 2022 Jun 30.
5
ITAS: Integrated Transcript Annotation for Small RNA.
Noncoding RNA. 2022 May 2;8(3):30. doi: 10.3390/ncrna8030030.
6
Transcriptome analysis provides critical answers to the "variants of uncertain significance" conundrum.
Hum Mutat. 2022 Nov;43(11):1590-1608. doi: 10.1002/humu.24394. Epub 2022 May 18.
7
Illuminating lncRNA Function Through Target Prediction.
Methods Mol Biol. 2021;2372:263-295. doi: 10.1007/978-1-0716-1697-0_22.
8
RNAdetector: a free user-friendly stand-alone and cloud-based system for RNA-Seq data analysis.
BMC Bioinformatics. 2021 Jun 3;22(1):298. doi: 10.1186/s12859-021-04211-7.
9
Novel lincRNA Discovery and Tissue-Specific Gene Expression across 30 Normal Human Tissues.
Genes (Basel). 2021 Apr 21;12(5):614. doi: 10.3390/genes12050614.

本文引用的文献

1
TACO produces robust multisample transcriptome assemblies from RNA-seq.
Nat Methods. 2017 Jan;14(1):68-70. doi: 10.1038/nmeth.4078. Epub 2016 Nov 21.
2
TransComb: genome-guided transcriptome assembly via combing junctions in splicing graphs.
Genome Biol. 2016 Oct 19;17(1):213. doi: 10.1186/s13059-016-1074-1.
3
Long noncoding and circular RNAs in lung cancer: advances and perspectives.
Epigenomics. 2016 Sep;8(9):1275-87. doi: 10.2217/epi-2016-0036. Epub 2016 Sep 2.
5
6
HISAT: a fast spliced aligner with low memory requirements.
Nat Methods. 2015 Apr;12(4):357-60. doi: 10.1038/nmeth.3317. Epub 2015 Mar 9.
7
StringTie enables improved reconstruction of a transcriptome from RNA-seq reads.
Nat Biotechnol. 2015 Mar;33(3):290-5. doi: 10.1038/nbt.3122. Epub 2015 Feb 18.
8
The landscape of long noncoding RNAs in the human transcriptome.
Nat Genet. 2015 Mar;47(3):199-208. doi: 10.1038/ng.3192. Epub 2015 Jan 19.
9
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
10
Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer.
Genome Biol. 2014 Aug 13;15(8):429. doi: 10.1186/s13059-014-0429-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验