Suppr超能文献

时变温度对基因网络延迟的影响。

The effects of time-varying temperature on delays in genetic networks.

作者信息

Gomez Marcella M, Murray Richard M, Bennett Matthew R

机构信息

Electrical Engineering and Computer Science, UC Berkeley, CA 94720, USA (

California Institute of Technology, Pasadena, CA 91125, USA (

出版信息

SIAM J Appl Dyn Syst. 2016;15(3):1734-1752. doi: 10.1137/15M1040979. Epub 2016 Sep 15.

Abstract

Delays in gene networks result from the sequential nature of protein assembly. However, it is unclear how models of gene networks that use delays should be modified when considering time-dependent changes in temperature. This is important, as delay is often used in models of genetic oscillators that can be entrained by periodic fluctuations in temperature. Here, we analytically derive the time dependence of delay distributions in response to time-varying temperature changes. We find that the resulting time-varying delay is nonlinearly dependent on parameters of the time-varying temperature such as amplitude and frequency, therefore, applying an Arrhenius scaling may result in erroneous conclusions. We use these results to examine a model of a synthetic gene oscillator with temperature compensation. We show that temperature entrainment follows from the same mechanism that results in temperature compensation. Under a common Arrhenius scaling alone, the frequency of the oscillator is sensitive to changes in the mean temperature but robust to changes in the frequency of a periodically time-varying temperature. When a mechanism for temperature compensation is included in the model, however, we show that the oscillator is entrained by periodically varying temperature even when maintaining insensitivity to the mean temperature.

摘要

基因网络中的延迟源于蛋白质组装的顺序性。然而,尚不清楚在考虑温度随时间的变化时,使用延迟的基因网络模型应如何修改。这一点很重要,因为延迟常用于可被温度周期性波动所驱动的遗传振荡器模型中。在此,我们通过分析得出响应随时间变化的温度变化时延迟分布的时间依赖性。我们发现,由此产生的随时间变化的延迟与随时间变化的温度参数(如幅度和频率)呈非线性相关,因此,应用阿伦尼乌斯标度可能会得出错误结论。我们利用这些结果来研究一个具有温度补偿的合成基因振荡器模型。我们表明,温度驱动源于导致温度补偿的相同机制。仅在常见的阿伦尼乌斯标度下,振荡器的频率对平均温度的变化敏感,但对周期性随时间变化的温度的频率变化具有鲁棒性。然而,当模型中包含温度补偿机制时,我们表明即使振荡器对平均温度保持不敏感,它也会被周期性变化的温度所驱动。

相似文献

1
The effects of time-varying temperature on delays in genetic networks.
SIAM J Appl Dyn Syst. 2016;15(3):1734-1752. doi: 10.1137/15M1040979. Epub 2016 Sep 15.
2
Amplitude death in networks of delay-coupled delay oscillators.
Philos Trans A Math Phys Eng Sci. 2013 Aug 19;371(1999):20120462. doi: 10.1098/rsta.2012.0462. Print 2013 Sep 28.
3
Marching along to an Offbeat Drum: Entrainment of Synthetic Gene Oscillators by a Noisy Stimulus.
ACS Synth Biol. 2016 Feb 19;5(2):146-53. doi: 10.1021/acssynbio.5b00127. Epub 2015 Nov 12.
4
The role of network structure and time delay in a metapopulation Wilson--Cowan model.
J Theor Biol. 2019 Sep 21;477:1-13. doi: 10.1016/j.jtbi.2019.05.010. Epub 2019 Jun 7.
5
Delay- and topology-independent design for inducing amplitude death on networks with time-varying delay connections.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):042928. doi: 10.1103/PhysRevE.92.042928. Epub 2015 Oct 30.
7
Heat the Clock: Entrainment and Compensation in Circadian Rhythms.
J Circadian Rhythms. 2019 May 14;17:5. doi: 10.5334/jcr.179.
8
Passive synchronization for Markov jump genetic oscillator networks with time-varying delays.
Math Biosci. 2015 Apr;262:80-7. doi: 10.1016/j.mbs.2015.01.012. Epub 2015 Feb 2.
9
Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.
ACS Synth Biol. 2017 Mar 17;6(3):455-462. doi: 10.1021/acssynbio.6b00157. Epub 2016 Dec 21.
10
Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops.
Phys Rev E. 2016 Nov;94(5-1):052413. doi: 10.1103/PhysRevE.94.052413. Epub 2016 Nov 28.

引用本文的文献

1
Investigating the dynamics of microbial consortia in spatially structured environments.
Nat Commun. 2020 May 15;11(1):2418. doi: 10.1038/s41467-020-16200-0.
2
Bayesian inference of distributed time delay in transcriptional and translational regulation.
Bioinformatics. 2020 Jan 15;36(2):586-593. doi: 10.1093/bioinformatics/btz574.

本文引用的文献

1
Synchronization of degrade-and-fire oscillations via a common activator.
Phys Rev Lett. 2014 Sep 19;113(12):128102. doi: 10.1103/PhysRevLett.113.128102. Epub 2014 Sep 16.
2
Engineered temperature compensation in a synthetic genetic clock.
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):972-7. doi: 10.1073/pnas.1316298111. Epub 2014 Jan 6.
3
Transcriptional delay stabilizes bistable gene networks.
Phys Rev Lett. 2013 Aug 2;111(5):058104. doi: 10.1103/PhysRevLett.111.058104.
4
Modeling and validating chronic pharmacological manipulation of circadian rhythms.
CPT Pharmacometrics Syst Pharmacol. 2013 Jul 17;2(7):e57. doi: 10.1038/psp.2013.34.
5
A mechanism for robust circadian timekeeping via stoichiometric balance.
Mol Syst Biol. 2012;8:630. doi: 10.1038/msb.2012.62.
6
Adaptive temperature compensation in circadian oscillations.
PLoS Comput Biol. 2012;8(7):e1002585. doi: 10.1371/journal.pcbi.1002585. Epub 2012 Jul 12.
7
Temperature compensation and entrainment in circadian rhythms.
Phys Biol. 2012 Jun;9(3):036011. doi: 10.1088/1478-3975/9/3/036011. Epub 2012 Jun 8.
8
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8109-14. doi: 10.1073/pnas.1120711109. Epub 2012 May 7.
9
Modeling synthetic gene oscillators.
Math Biosci. 2012 Mar;236(1):1-15. doi: 10.1016/j.mbs.2012.01.001. Epub 2012 Jan 18.
10
Stochastic delay accelerates signaling in gene networks.
PLoS Comput Biol. 2011 Nov;7(11):e1002264. doi: 10.1371/journal.pcbi.1002264. Epub 2011 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验