Deptartment of Bioinformatics, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
Phys Biol. 2012 Jun;9(3):036011. doi: 10.1088/1478-3975/9/3/036011. Epub 2012 Jun 8.
To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.
为了预测环境的日常变化,并将生物活动协调到一个日常周期中,许多生物都拥有生物钟。在没有外部时间线索的情况下,生物钟会以大约 24 小时的周期持续存在。时钟相位可以通过单个光脉冲、黑暗、化学物质或温度来移动,这允许通过这些时间信号的循环将时钟精确地同步到 24 小时。另一方面,在恒温的生理范围内,生物钟的周期保持相对稳定,这意味着振荡器具有温度补偿功能。温度补偿和温度同步的机制在生化和数学上都没有得到充分理解。在这里,我们从理论上研究了一般振荡系统中温度补偿和同步的相互作用。我们首先对小的温度变化进行了分析处理,并推导出每个温度补偿振荡器都可以被外部小幅度温度循环同步。温度补偿确保无论可能的季节性温度差异如何,这个同步区域始终以内源性周期为中心。此外,对于小的温度循环,振荡器的同步区域对于矩形脉冲来说潜在更大。对于较大的温度变化,我们对文献中提出的不同生物钟模型进行了数值分析,以研究它们在这些特性方面的表现。我们观察到,对于如此大的温度变化,正弦或渐变的温度循环比矩形循环允许更大的同步区域。