Suppr超能文献

利用三次谐波产生显微镜检查眼睛发育情况。

Examination of eye development with third harmonic generation microscopy.

作者信息

Karunendiran Abiramy, Cisek Richard, Tokarz Danielle, Barzda Virginijus, Stewart Bryan A

机构信息

Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada.

Department of Cell and Systems Biology, University of Toronto, 25 Harbord St, Toronto, Ontario M5S 3G5, Canada.

出版信息

Biomed Opt Express. 2017 Sep 14;8(10):4504-4513. doi: 10.1364/BOE.8.004504. eCollection 2017 Oct 1.

Abstract

Third harmonic generation (THG) microscopy can exploit endogenous harmonophores such as pigment macromolecules for enhanced image contrast, and therefore can be used without exogenous contrast agents. Previous studies have established that carotenoid compounds are ideal harmonophores for THG microscopy; we therefore sought to determine whether THG from endogenous carotenoid-derived compounds, such as retinal in photoreceptor cells, could serve as a new label-free method for developmental studies. Here we study the development of the pupal eye in and determine the localization of rhodopsin using THG microscopy technique. Additionally, by altering the chromophore or the opsin protein we were able to detect changes in both the retinal distribution morphology and in THG intensity age-dependent profiles. These results demonstrate that THG microscopy can be used to detect altered photoreceptor development and may be useful in clinically relevant conditions associated with photoreceptor degeneration.

摘要

三次谐波产生(THG)显微镜可以利用内源性谐波源,如色素大分子,来增强图像对比度,因此无需外源性造影剂即可使用。先前的研究已经证实,类胡萝卜素化合物是THG显微镜理想的谐波源;因此,我们试图确定来自内源性类胡萝卜素衍生化合物(如光感受器细胞中的视黄醛)的THG是否可以作为发育研究的一种新的无标记方法。在这里,我们使用THG显微镜技术研究了果蝇蛹眼的发育,并确定了视紫红质的定位。此外,通过改变发色团或视蛋白,我们能够检测到视网膜分布形态和THG强度年龄依赖性曲线的变化。这些结果表明,THG显微镜可用于检测光感受器发育的改变,并且可能对与光感受器退化相关的临床相关病症有用。

相似文献

1
Examination of eye development with third harmonic generation microscopy.
Biomed Opt Express. 2017 Sep 14;8(10):4504-4513. doi: 10.1364/BOE.8.004504. eCollection 2017 Oct 1.
2
Carotenoid based bio-compatible labels for third harmonic generation microscopy.
Phys Chem Chem Phys. 2012 Aug 14;14(30):10653-61. doi: 10.1039/c2cp41583f. Epub 2012 Jun 28.
5
Dynamic aberration correction for multiharmonic microscopy.
Opt Lett. 2009 Oct 15;34(20):3145-7. doi: 10.1364/OL.34.003145.
6
Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos.
Biomed Opt Express. 2011 Oct 1;2(10):2837-49. doi: 10.1364/BOE.2.002837. Epub 2011 Sep 26.
7
Distinction between breast cancer cell subtypes using third harmonic generation microscopy.
J Biophotonics. 2017 Sep;10(9):1152-1162. doi: 10.1002/jbio.201600173. Epub 2016 Oct 18.
9
Third harmonic generation imaging for fast, label-free pathology of human brain tumors.
Biomed Opt Express. 2016 Apr 18;7(5):1889-904. doi: 10.1364/BOE.7.001889. eCollection 2016 May 1.
10
A Method to Measure Myeloarchitecture of the Murine Cerebral Cortex and by Intrinsic Third-Harmonic Generation.
Front Neuroanat. 2019 Jun 26;13:65. doi: 10.3389/fnana.2019.00065. eCollection 2019.

引用本文的文献

1
Tools to reverse-engineer multicellular systems: case studies using the fruit fly.
J Biol Eng. 2019 Apr 23;13:33. doi: 10.1186/s13036-019-0161-8. eCollection 2019.
2

本文引用的文献

1
Retinal differentiation in Drosophila.
Wiley Interdiscip Rev Dev Biol. 2013 Jul;2(4):545-57. doi: 10.1002/wdev.100. Epub 2012 Nov 16.
2
Measuring the molecular second hyperpolarizability in absorptive solutions by the third harmonic generation ratio technique.
Anal Chim Acta. 2012 Nov 28;755:86-92. doi: 10.1016/j.aca.2012.09.049. Epub 2012 Oct 9.
3
NIH Image to ImageJ: 25 years of image analysis.
Nat Methods. 2012 Jul;9(7):671-5. doi: 10.1038/nmeth.2089.
4
Carotenoid based bio-compatible labels for third harmonic generation microscopy.
Phys Chem Chem Phys. 2012 Aug 14;14(30):10653-61. doi: 10.1039/c2cp41583f. Epub 2012 Jun 28.
5
Drosophila visual transduction.
Trends Neurosci. 2012 Jun;35(6):356-63. doi: 10.1016/j.tins.2012.03.004. Epub 2012 Apr 10.
6
Building an ommatidium one cell at a time.
Dev Dyn. 2012 Jan;241(1):136-49. doi: 10.1002/dvdy.23707.
7
Multiphoton microscopy for ophthalmic imaging.
J Ophthalmol. 2011;2011:870879. doi: 10.1155/2011/870879. Epub 2011 Jan 3.
9
Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal.
Opt Express. 2009 Jul 6;17(14):12039-42. doi: 10.1364/oe.17.012039.
10
Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser.
Opt Lett. 2001 Dec 1;26(23):1909-11. doi: 10.1364/ol.26.001909.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验