Suppr超能文献

群体编码与标记问题:外在与内在表现。

Population coding and the labeling problem: extrinsic versus intrinsic representations.

机构信息

Computational Neurobiology Laboratory, Salk Institute, La Jolla, CA 92037, USA.

出版信息

Neural Comput. 2013 Sep;25(9):2235-64. doi: 10.1162/NECO_a_00486. Epub 2013 Jun 18.

Abstract

Current population coding methods, including weighted averaging and Bayesian estimation, are based on extrinsic representations. These require that neurons be labeled with response parameters, such as tuning curve peaks or noise distributions, which are tied to some external, world-based metric scale. Firing rates alone, without this external labeling, are insufficient to represent a variable. However, the extrinsic approach does not explain how such neural labeling is implemented. A radically different and perhaps more physiological approach is based on intrinsic representations, which have access only to firing rates. Because neurons are unlabeled, intrinsic coding represents relative, rather than absolute, values of a variable. We show that intrinsic coding has representational advantages, including invariance, categorization, and discrimination, and in certain situations it may also recover absolute stimulus values.

摘要

目前的群体编码方法,包括加权平均和贝叶斯估计,都是基于外在表示。这些方法要求神经元用响应参数进行标记,例如调谐曲线峰值或噪声分布,这些参数与某些外部的、基于世界的度量尺度有关。仅仅是放电率本身,没有这种外部标记,不足以表示一个变量。然而,这种外在的方法并不能解释这种神经标记是如何实现的。一种截然不同的、也许更符合生理的方法是基于内在表示的,它只能访问放电率。由于神经元没有被标记,内在编码代表的是变量的相对值,而不是绝对值。我们表明,内在编码具有表示优势,包括不变性、分类和辨别,并且在某些情况下,它也可以恢复绝对的刺激值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验