Meyers Robin M, Bryan Jordan G, McFarland James M, Weir Barbara A, Sizemore Ann E, Xu Han, Dharia Neekesh V, Montgomery Phillip G, Cowley Glenn S, Pantel Sasha, Goodale Amy, Lee Yenarae, Ali Levi D, Jiang Guozhi, Lubonja Rakela, Harrington William F, Strickland Matthew, Wu Ting, Hawes Derek C, Zhivich Victor A, Wyatt Meghan R, Kalani Zohra, Chang Jaime J, Okamoto Michael, Stegmaier Kimberly, Golub Todd R, Boehm Jesse S, Vazquez Francisca, Root David E, Hahn William C, Tsherniak Aviad
Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
Dana-Farber Cancer Institute, Boston, Massachusetts, USA.
Nat Genet. 2017 Dec;49(12):1779-1784. doi: 10.1038/ng.3984. Epub 2017 Oct 30.
The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions. We developed CERES, a computational method to estimate gene-dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy number-specific effect. In our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this data set. We found that CERES decreased false-positive results and estimated sgRNA activity for both this data set and previously published screens performed with different sgRNA libraries. We further demonstrate the utility of this collection of screens, after CERES correction, for identifying cancer-type-specific vulnerabilities.
CRISPR-Cas9系统在单基因编辑和多重功能丧失筛选方面彻底改变了基因编辑技术,从而能够在基因组规模上精确鉴定癌细胞增殖和存活所必需的基因。然而,先前的研究报道,Cas9介导的DNA切割产生的与基因无关的抗增殖效应会混淆这种基因依赖性的测量,从而在拷贝数扩增区域导致假阳性结果。我们开发了CERES,这是一种计算方法,可在考虑拷贝数特异性效应的同时,从CRISPR-Cas9必需性筛选中估计基因依赖性水平。在我们构建癌症依赖性图谱的过程中,我们对342个癌细胞系进行了全基因组规模的CRISPR-Cas9必需性筛选,并将CERES应用于该数据集。我们发现,CERES减少了假阳性结果,并估计了该数据集以及先前使用不同sgRNA文库进行的已发表筛选中的sgRNA活性。我们进一步证明,经过CERES校正后,这组筛选对于识别癌症类型特异性脆弱性的实用性。