From the Departments of Biochemistry of Neurodegenerative Diseases and.
the Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University Freiburg, D-79104 Freiburg im Breisgau, Germany.
J Biol Chem. 2017 Dec 29;292(52):21383-21396. doi: 10.1074/jbc.M117.788067. Epub 2017 Oct 30.
About one-quarter to nearly one-third of the proteins synthesized in the cytosol of eukaryotic cells are integrated into the plasma membrane or are secreted. Translocation of secretory proteins into the lumen of the endoplasmic reticulum or the periplasm of bacteria is mediated by a highly conserved heterotrimeric membrane protein complex denoted Sec61 in eukaryotes and SecYEG in bacteria. To evaluate a possible modulation of the translocation efficiency by secondary structures of the nascent peptide chain, we performed a comparative analysis in bacteria, yeast, and mammalian cells. Strikingly, neither the bacterial SecY nor the eukaryotic Sec61 translocon was able to efficiently transport proteins entirely composed of intrinsically disordered domains (IDDs) or β-strands. However, translocation could be restored by α-helical domains in a position- and organism-dependent manner. In bacteria, we found that the α-helical domains have to precede the IDD or β-strands, whereas in mammalian cells, C-terminally located α-helical domains are sufficient to promote translocation. Our study reveals an evolutionarily conserved deficiency of the Sec61/SecY complex to translocate IDDs and β-strands in the absence of α-helical domains. Moreover, our results may suggest that adaptive pathways co-evolved with the expansion of IDDs in the proteome of eukaryotic cells to increase the transport capacity of the Sec61 translocon.
真核细胞细胞质中合成的蛋白质约有四分之一到三分之一被整合到质膜中或被分泌。分泌蛋白易位到内质网腔或细菌周质的过程是由高度保守的异源三聚体膜蛋白复合物介导的,在真核生物中称为 Sec61,在细菌中称为 SecYEG。为了评估新生肽链的二级结构对易位效率的可能调节作用,我们在细菌、酵母和哺乳动物细胞中进行了比较分析。令人惊讶的是,细菌 SecY 和真核 Sec61 易位体都不能有效地转运完全由固有无序结构域 (IDDs) 或 β-折叠组成的蛋白质。然而,通过在位置和生物体依赖性方式α-螺旋结构域可以恢复易位。在细菌中,我们发现α-螺旋结构域必须先于 IDD 或 β-折叠,而在哺乳动物细胞中,C 末端的α-螺旋结构域足以促进易位。我们的研究揭示了 Sec61/SecY 复合物在没有α-螺旋结构域的情况下易位 IDD 和β-折叠的进化保守缺陷。此外,我们的结果可能表明,与真核细胞蛋白质组中 IDD 的扩展相关的适应性途径共同进化,以增加 Sec61 易位体的运输能力。